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Abstract

This paper presents an approach to active mining of patient records aimed at discovering patient

groups at high risk for coronary heart disease (CHD). The approach proposes active expert

involvement in the following steps of the knowledge discovery process: data gathering, cleaning

and transformation, subgroup discovery, statistical characterization of induced subgroups, their

interpretation, and the evaluation of results. As in the discovery and characterization of risk

subgroups, the main risk factors are made explicit, the proposed methodology has high potential

for patient screening and early detection of patient groups at risk for CHD.
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1. Introduction

This paper presents an approach to active mining of patient records aimed at discovering

patient groups at high risk for coronary heart disease (CHD). This section presents the

backgrounds of this work: the problem of coronary heart disease risk group detection, the

subgroup discovery task and the task of active mining of patient risk groups, followed by

the outline of this paper.
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1.1. Coronary heart disease and the problem of risk group detection

Atherosclerotic coronary heart disease is one of the world’s most frequent causes of

mortality and an important problem in medical practice. Many extensive epidemiological

studies have been performed with the intention to detect and evaluate factors that increase

the risk of this cardiovascular disease. The well-known Framingham Heart Study, which

began in 1948 with a sample of about 5000 people, followed up for the period of 40 years

[2,40], is one of such studies. As a result, we know a lot about CHD risk factors including

artherosclerotic attributes, living habits, hemostatic factors, blood pressure, and metabolic

factors. Clinical studies have revealed plausible biological links between many risk factors

and atherosclerosis [22]. In addition, it was detected that coexistence of risk factors

increases the disease rate.

Risk factors can be classified into four categories, based on the evidence supporting their

association with the disease, the usefulness of measuring them, and their responsiveness to

intervention [32]. Category I consists of the most important risk factors for which high

correlation with CHD rate has been proved (cigarette smoking, LDL cholesterol, high fat

cholesterol diet, hypertension, left ventricular hypertrophy [10] and thrombogenic factors).

Category II includes risk factors for which the correlation with CHD is likely (diabetes

mellitus, physical inactivity, HDL cholesterol, triglycerides [3], obesity and postmeno-

pausal status for women). Category III is formed of risk factors associated with increased

CHD rate that, if modified, may decrease the risk (psychosocial factors, lipoprotein,

homocystein, oxidative stress and no alcohol consumption). In contrast to the previous

categories, Category IV consists of risk factors associated with the increased CHD rate

which can not be influenced (age, male gender, low socioeconomic status and family

history of early CHD onset).

Today’s CHD prevention relies practically on two significantly different concepts.

1. General education of the whole population about known risk factors, especially about

life-style factors. On the one hand, the results of this approach can be evaluated as

very good, since a significant part of the population is now aware of CHD risk factors.

However, its practical influence is estimated as small because people are not ready to

accept the suggestions seriously before the occurrence of first actual signs of the

disease.

2. Risk factor screening in general practice by data collection performed in three

different stages.

2.1. Collecting anamnestic information and physical examination results, including

risk factors like age, positive family history, weight, height, cigarette smoking,

alcohol consumption, blood pressure, and previous heart and vascular diseases.

2.2. Collecting results of laboratory tests, including information about risk factors like

lipid profile, glucose tolerance, and trombogenic factors.

2.3. Collecting ECG at rest test results, including measurements of heart rate, left

ventricular hypertrophy, ST segment depression, cardiac arhythmias and

conduction disturbances.

The data collected in general practice screening can be used as a basis for detecting

patients at risk for coronary heart disease. In many cases with significantly pathological test
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values (especially, for example, left ventricular hypertrophy, increased LDL cholesterol,

decreased HDL cholesterol, hypertension, and intolerance glucose) the decision is not

difficult. However, the problem of disease prevention is to decide in cases with slightly

abnormal values and in cases when combinations of different risk factors occur.

1.2. Active mining and subgroup discovery

The process of knowledge discovery in databases (KDD, [16]) consists of a sequence of

steps, including problem understanding, data understanding and preparation, data mining,

result interpretation and evaluation, and finally, the use of induced knowledge. This

induction process is iterative and interactive. It is iterative, since many steps may need to be

repeated before a satisfactory solution is found. It is also interactive, assuming expert’s

involvement in most of the phases of the knowledge discovery process.

In this work, the data mining step corresponds to subgroup mining. In the addressed

patient risk group detection application, the expert’s role is of ultimate importance for the

success of the knowledge discovery process. Expert’s involvement supports active mining

of patient groups at high risk for coronary heart disease.

Active mining is an approach to data mining, emphasizing the importance of expert’s

involvement in the discovery process, as opposed to fully automated knowledge discovery

approaches. This process, propagated in the large Japanese active mining project (2001–

2005, [34]), is in line with the KDD process, which is also iterative and interactive.

The main ingredient of the proposed active mining methodology for risk group detection

is an algorithm supporting expert-guided discovery of ‘interesting’ subgroups in a popu-

lation of individuals. As in the MIDOS subgroup discovery approach [43], the addressed

subgroup discovery task is defined as follows: given a population of individuals and a

property of those individuals we are interested in, find population subgroups that are

statistically ‘most interesting’, e.g. are as large as possible and have the most unusual

distributional characteristics with respect to the property of interest.

The subgroups, discovered by an expert-guided rule induction process, are represented

as if-then rules of the form Class Cond, where Class is the property of interest (e.g.

the target class like ‘coronary heart disease’ in our case study), and Cond is a conjunction

of conditions (e.g. a conjunction of features describing the illness).

1.3. Active mining of coronary heart disease risk groups

The database that was available for this study was collected at the Institute for

Cardiovascular Prevention and Rehabilitation in Zagreb, Croatia. Given that the dataset

has been collected at a specialized medical institution, its disadvantage is that it is not an

appropriate epidemiological CHD database reflecting actual CHD occurrence in a general

population, as about 50% of gathered patient records represent CHD patients. On the other

hand, the advantage of this dataset is that it includes a sufficient number of records of

different types of the disease. In order to have an adequately large number of CHD patient

records from a general population, a very large data collection from general practice

screening would need to be made available for the CHD risk group discovery experiments.

Such a dataset has not been available. Consequently, we had to do our best to overcome this
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deficiency by using a subgroup discovery system (system Data Mining Server (DMS)

described in this paper) as a toolbox supporting the medical expert and the knowledge

engineer in the interactive and iterative active mining process of subgroup discovery from

the available biased dataset.

Semi-automated active mining may at a first glance seem inappropriate as means for

knowledge discovery. This paper shows that, on the contrary, such an approach may be very

productive and useful, overcoming the deficiencies of automated knowledge discovery

from an inappropriate data collection in the cases when it is impossible to gather a

sufficiently large unbiased data collection from general practice screening. This is achieved

by the extensive use of the available expert knowledge and active involvement of the expert

in all steps of the discovery process. In several iterative runs of the subgroup discovery

algorithm, in which the expert can affect the attributes used for learning, as well as the

generality and the complexity of induced rules, this active mining process can result in

the discovery of relevant new rules. The main characteristic of the methodology is that the

obtained results reflect the knowledge and experience of the medical expert.

The evaluation of the quality of rules on a separate validation set is a necessary part of

the proposed methodology. One should be aware, however, that validation results will

depend on the tested population as well as on the data collecting procedures (equipment,

standards, and medical practice). In this work, the applicability of the achieved results has

been evaluated on two independent test sets, one of them being a validation set of

employees of two large Croatian companies. This validation set can be considered as a

small epidemiological validation set, although the dataset is too small to give reliable

epidemiological results, and includes only a part of the interesting population for CHD

screening, as, for instance, unemployed or retired people as well as children had not been

included in this set.

Given the limitations and specifics of the available data, and the biases of the expert

involved in the experiments, the induced subgroup descriptions should not be considered as

the ultimate CHD risk group descriptions to be used for CHD risk group detection

worldwide. The limitations and biases of the actual experiments are described in sufficient

detail for the reader to be able to judge the generality of the induced results and their

applicability in general medical practice. In our view, the main contribution of this paper is

a proposed subgroup discovery methodology, rather than the resulting CHD risk group

descriptions: the paper should be viewed as a methodological study suggesting how to

address the problem of patient risk group detection. Its main advantage is that a sequence of

steps constituting the active subgroup mining process is proposed, most of which are

supported by algorithms implemented in the Data Mining Server (DMS), available on-line

for public use at the web site, http://dms.irb.hr.

1.4. Paper outline

The rest of the paper is organized as follows. Section 2 describes the available CHD

dataset. Section 3 illustrates the individual steps of the proposed active subgroup mining

methodology as implemented in the Data Mining Server: data selection, cleaning and

transformation in the required format, followed by interactive and iterative subgroup

discovery and statistical characterization of subgroups. The discovered risk groups are then
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interpreted and formulated in natural language sentences (Section 4), and their applic-

ability is evaluated on two independent datasets (Section 5). The paper concludes with a

section on related work (Section 6).

2. The CHD dataset

The database consists of records of patients who entered the Institute for Cardiovascular

Prevention and Rehabilitation in the period of a few months. The set of descriptors

represents all potentially interesting and typically available information about patients.

The descriptor set includes anamnestic parameters (stage A: 10 items, see Table 1),

parameters describing laboratory test results (stage B: seven items, Table 2), ECG at rest

(stage C: five items, Table 3), the exercise test data (five items), echocardiography results

(two items), vectorcardiography results (two items), and long-term continuous ECG

recording data (three items). In this study, only anamnestic, laboratory and ECG at rest

data were used to form the risk group descriptions, since, for screening purposes, one needs

to take into account only those parameters that can be observed and measured by general

practitioners.

In this study, only patients with complete data were included into the dataset, resulting in

the dataset with 238 patient records: 111 CHD patients (positive cases), and 127 people

Table 1

The names and characteristics of 10 anamnestic descriptors used at stage A

Descriptor Abbreviation Characteristics

Sex SEX Man, woman

Age AGE Continuous (years)

Height H Continuous (cm)

Weight W Continuous (kg)

Body mass index BMI Continuous (kg m�2)

Family anamnesis F.A. Negative, positive

Present smoking P.S. 1: negative; 2: positive; 3: very positive

Systolic blood pressure SBP Continuous (mmHg)

Diastolic blood pressure DBP Continuous (mmHg)

Stress STR 1: negative; 2: positive; 3: very positive

Table 2

The names and characteristics of seven laboratory test descriptors additionally used at stage B

Descriptor Abbreviation Characteristics

Total cholesterol T.CH. Continuous (mmol l�1)

Trygliceride TR Continuous (mmol l�1)

High-density lipoprotein HDL/CH Continuous (mmol l�1)

Low-density lipoprotein LDL/CH Continuous (mmol l�1)

Uric acid U.A. Continuous (mmol l�1)

Fibrinogen FIB Continuous (g l�1)

Glucose GLU Continuous (mmol l�1)
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without CHD (negative cases). Among them there are 177 males (80 positive and 97

negative) and 61 females (31 positive and 30 negative). The database collected at the

institute is not an epidemiological CHD database reflecting actual CHD occurrence in a

general population, since about 50% of gathered patient records represent CHD

patients. Moreover, the included negative cases (patients who do not have CHD) are

not randomly selected people but individuals with some subjective problems or those

considered by general practitioners as potential CHD patients, and hence sent for further

investigations to the institute. However, the dataset is very valuable since it includes a

number of records of different types of the disease. The consequences of the biased

dataset are two-fold:

1. Features induced as main subgroup characteristics detected by the subgroup

discovery algorithms may be influenced by the bias of this dataset. Among the

patients that are in the dataset, there are many patients who have had the disease

already for a long time and have been exposed to medicamental therapy which

reduces important risk factors. Moreover, most patients have already changed their

life styles concerning smoking and nutrition habits. On the other side, negative cases

are people that do not have CHD but may be ill because of some other heart-related

disease. Consequently, their test values may be different from typical values expected

for a healthy person.

2. Subgroup statistics measured on this data are significantly different from those that

can be expected in other populations (e.g. the general population). In order to enable

comparisons of induced subgroups and to estimate their behaviour in different

populations (e.g. the employee population, the general population, . . .), the rules

describing the discovered CHD subgroups should be accompanied with appropriate

evaluation measures. The selected measures are the Sensitivity or the true positive rate

(TPr) which represents the percentage of CHD patients described by the subgroup, and

the second is false alarm or false positive rate (FPr) which is the percentage of healthy

people incorrectly classified by this subgroup as patients with CHD.1

Table 3

The names and characteristics of five ECG at rest descriptors added to stages A and B descriptors at stage C

Descriptor Abbreviation Characteristics

Heart rate HR Continuous (beats min�1)

ST segment depression ECGst 1 if <1 mm, 2 if 1–2 mm, 3 if �2 mm

(1 mm corresponds to 0.1 mV)

Serious arrhythmias ECGrhyt Negative, positive

Conduction disorders ECGcd Negative, positive

Left ventricular hypertrophy ECGhlv Negative, positive

1 Sensitivity measures the fraction of positive cases that are classified as positive, whereas specificity

measures the fraction of negative cases classified as negative. Let TP denote true positives, TN true negatives,

FP false positives and FN false negative answers, then Sensitivity ¼ TPr ¼ TP=ðTPþ FNÞ ¼ TP=Pos,

Specificity ¼ TN=ðTNþ FPÞ ¼ TN=Neg, and FalseAlarm ¼ 1� Specificity ¼ FPr ¼ FP=ðTNþ FPÞ ¼ FP=
Neg.
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3. Active mining using the Data Mining Server

The main ingredients of the proposed subgroup discovery methodology are implemen-

ted in the interactive Data Mining Server available on-line for public use at the web site

http://dms.irb.hr. The DMS home page is shown in Fig. 1. The DMS web site consists of

two main parts.

1. The first part contains educational materials and tutorials, including links to other sites

describing data mining techniques. In this part users can learn about the data mining

problem definition, data preparation, interpretation of the results obtained by the analysis,

available data mining tools, available literature, lessons learned and similar topics.

2. The second part enables on-line execution of selected data analysis procedures,

including the induction of rules describing interesting subgroups. Conditions of

induced if-then rules are in the form of conjunction of features that are

automatically constructed from the data. In addition, DMS makes it possible to detect

noisy (erroneous) examples and outliers in data preprocessing.

The algorithms implemented in DMS are applicable for demonstration purposes on

datasets with up to 250 training examples. A more sophisticated implementation of the

algorithms has been used in the experiments described in this paper.

Fig. 1. The Data Mining Server home page.
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3.1. Data representation and preprocessing

3.1.1. Data representation

The input dataset, referred to as training examples E, has the form of a table in which

every instance (e.g. each patient record) is represented in a separate row. Instances are

described by a fixed set of descriptors (attributes). Attributes are of one of the three possible

types: discrete, continuous, or integer. Table 4 illustrates a part of the input data file,

consisting of attributes from all CHD data collection stages. In the first row, there are

attribute names, while every consequent row represents a patient record, where a patient is

described by the corresponding attribute values. In this table, attribute sex is of type

discrete, stress is of type integer (stress value 1 corresponds to negative, 2 to positive, and 3

to very positive) and all other attributes are of type continuous. The question mark (?)

denotes an unknown value.

In subgroup discovery, like in supervised inductive learning, a class attribute needs to be

specified. In Table 4 attribute Diag is selected as the class attribute (note the exclamation

mark in front of the attribute name). Diag has values 1–5, where 1 denotes no CHD and 5

corresponds to very ill CHD patients. Attribute value 3 or higher is selected as the value

discriminating the target class instances from the others. Again, the exclamation mark is

used to denote the target class. While only one attribute may be used as the class attribute,

more than one attribute value may be selected to define the target class (examples belonging

to the target class are called positive examples, and others are called negative examples). In

the concrete medical domain, the object of induction is the search for subgroups (rules)

which describe confirmed CHD patients with diagnosis values 3–5 in contrast to not ill

people (non-CHD), i.e. non-target class instances with diagnosis values 1 or 2.

3.1.2. Data transformation

In the Data Mining Server, a training set that has initially the form of a table of attribute

values (as in Table 4) is transformed into a table of truth values of features.

Features are logical conditions formed of attribute values describing examples E.

Features have the form Attribute ¼ value, Attribute 6¼ value, Attribute > value, or

Attribute 	 value. Features are constructed by DMS from the dataset. To formalize feature

construction, let values vix (x ¼ 1; . . . ; kip) denote the kip different values of attribute Ai that

appear in the positive examples and wiy (y ¼ 1; . . . ; kin) the kin different values of Ai

appearing in the negative examples. Feature construction results in a set of features L

generated as follows:

Table 4

A sample input data table, including attributes from different CHD data collection stages

SEX AGE (years) BMI Stress Trygliceride Fibrinogen HOL_ST_s.d. !Diag

Male 64 27.30 2 1.74 4.0 0.5 !3

Male 57 25.30 1 ? 3.5 0.2 2

Male 65 25.15 1 1.68 5.5 1.8 !4

Female 19 20.00 1 1.20 2.5 0.0 1

Male 46 32.95 3 2.99 3.1 0.2 2
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 For discrete attributes Ai, features of the form Ai ¼ vix and Ai 6¼ wiy are generated.


 For continuous attributes Ai, features of the form Ai 	 ðvix þ wiyÞ=2 are created for all

neighboring value pairs (vix;wiy), and features Ai > ðvix þ wiyÞ=2 for all neighboring

pairs (wiy; vix). The motivation is similar as in [15].


 For integer valued attributes Ai, features are generated as if Ai were both discrete and

continuous, resulting in features of four different forms: Ai 	 ðvix þ wiyÞ=2,

Ai > ðvix þ wiyÞ=2, Ai ¼ vix, and Ai 6¼ wiy.

3.1.3. Noise and outlier detection

Noise (random errors) and outlier detection can be used before starting the induction

process.


 Noise occurs if some attribute values (or even the class values) have been incorrectly

measured or incorrectly recorded in the database.


 Outliers are correctly recorded cases with some exceptional properties.

Detection and expert analysis of noisy examples and outliers may be important for

understanding the data and the relations in the database.

The implemented noise and outlier detection procedure is based on the computation of the

complexity of the least complex correct hypothesis (CLCH value) for the given dataset. The

complexity of the hypothesis is measured by the number of different features used in the rule

that is true for all target class examples and false for all non-target class examples. An example

is detected as noisy if its elimination enables the reduction of the CLCH value. A detailed

description of the noise and outlier detection procedure, which is applied to the transformed

data table, is out of the main scope of this paper (the algorithm is described in detail in [18]).

Fig. 2 presents a list of patients that have been detected as noise/outliers for the complete

available CHD dataset (the DMS implementation of the procedure can detect up to five

noisy examples/outliers). The interpretation of the results of noise and outlier detection for

the CHD domain is given in Section 3.4.2.

3.2. Output of subgroup discovery

The output of the induction process is the description of induced subgroups of a given

target class (CHD patients) in if-then rule form, Class Cond, where Cond is a

Fig. 2. A list of detected noisy examples and outliers, to be analysed by the expert.
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conjunction of conditions (a conjunction of features describing the illness). The form of

features depends on the attribute types, as defined in Section 3.1.2.


 For discrete attributes features have the form Attribute ¼ value or Attribute 6¼ value,

e.g. ECGhlv ¼ positive.


 For continuous attributes features have the form Attribute > value or Attribute 	 value,

e.g. AGE > 63.


 For integer valued attributes (e.g. P.S., STR, ECGst) features have the forms of both

discrete and continuous attributes.

If a patient record satisfies the conditions of a rule, then it is classified as a patient with

CHD disease.

Fig. 3 illustrates a result obtained for the coronary heart disease risk group detection

problem, induced from a database consisting of 238 instances described by all the

available attributes (including stages A–C, as well as exercise and long-term ECG,

echocardigraphy and vectorcardiography tests). The rule in Fig. 3 was induced by the

subgroup discovery algorithm using the generality parameter value g ¼ 3, which tends to

construct rules that are correct for a relatively small number of positive cases but which

cover none or very few negative cases (rules with high specificity). This rule successfully

detects about 75% of all CHD patients, while only one of the 127 negative cases has been

erroneously classified as having CHD. The medical experts are not surprised by this good

result because the rule condition involves the ST segment depression value during a

controlled exercise. Even the induced discrimination value of 0.85 mm is rather expected.

This rule is listed just for illustration and has no practical value for risk group screening in

a general population; the reason is that the exercise ECG ST segment depression

measurement is not performed in general medical practice and can therefore not be used

for early risk group detection.

For illustration, let the same database be used for induction performed with a high value

of the generalization parameter, e.g. g ¼ 50 or 100. Induction again results in a very simple

rule with only one condition: Holter ECG ST segment depression >0.65, describing a group

of CHD patients. Its sensitivity and specificity are 95.5 and 96.9%, respectively. It can be

noticed that this rule covers much more positive patients (even 95% of them) and that it is

only slightly worse on negative instances (it erroneously classifies 4 negative cases into the

positive class).

Fig. 3. A subgroup induced for the CHD domain.
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An automated subgroup discovery system would give preference to the second rule,

due to high sensitivity and specificity values. However, in the active mining approach

both subgroups would be shown to the expert for evaluation. The above two examples

show that the task of DMS is to enable the induction of subgroups that are potentially

interesting while it is the task of the expert using the tool to direct the search by

selecting different generalization parameter values and to finally decide which of the

induced subgroups will be used for disease description and risk group detection

purposes.

3.3. DMS subgroup discovery algorithms

To construct rules describing subgroups of CHD patients at risk, a new active mining

method has been developed, which combines machine learning based induction of

interesting subgroups and statistical analysis of the detected subgroups. Expert knowledge

is included into the approach so that both the process of subgroup detection and the

statistical analysis are guided by a domain expert. The final result of active mining are

subgroup descriptions reformulated into natural language sentences in the interaction with

the medical expert.

The subgroup discovery algorithms implemented in the Data Mining Server are:


 a subgroup discovery algorithm for individual rule construction (Algorithm SD, out-

lined in Section 3.3.1, with pseudo-code in Appendix A), and


 a covering algorithm involving example weighting for rule set construction (Algorithm

DMS outlined in Section 3.3.2, with pseudo-code in Appendix B).

3.3.1. Algorithm SD for individual rule construction

The aim of the heuristic subgroup discovery algorithm (Algorithm SD) is the search for

rules with a maximal q value, where q is defined as q ¼ TP=ðFPþ gÞ. In the definition of q,

TP are true positives (the number of CHD patients correctly classified by the rule as

patients with CHD), FP are false positives (i.e. the number of non-CHD cases incorrectly

classified as patients with CHD), and g is a generalization parameter. By searching for

rules with high quality q, the heuristic confirmation rule induction algorithm tries to find

rules that cover many target class examples (CHD cases) and a low number of non-target

examples. The number of tolerated non-target examples, relative to the number of covered

target class cases, is determined by the parameter g.

Variations of parameter g enable the expert to guide subgroup discovery by varying

the TP/FP ratio. In Algorithm SD, increased generality results in more general

subgroups discovered. If g value is low (1 or less) then covering of any non-target

example (any non-CHD patient) is made relatively very expensive and the final result

are rules that cover only few target cases but also nearly no non-target class cases.

This results in rules with high specificity (low false alarm rate). If the value of g is

high (10 or higher) then covering of few non-target class examples is not so expensive

and more general rules can be generated. Rule quality measure q serves two purposes:

first, rule evaluation, and second, evaluation of features and their conjunctions

with high potential for the construction of high quality rules in subsequent iterations.
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For the first purpose, a measure assigning different costs to false positives and

false negatives could perform equally well, but for the purpose of guiding the search

the used measure q is more appropriate. Details of this analysis can be found in

[21].

Appendix A contains the pseudo-code of Algorithm SD. It shows that in addition to the

generalization parameter g, the user needs to select the values of other parameters,

including beam_width, defining the number of best rules induced in each step of rule

induction, and min_support, defining the minimal number of target class examples covered

by a rule (see a complete list of parameters in Section 3.4.3).

3.3.2. Algorithm DMS: a covering algorithm for rule set construction

Algorithm SD can generate many rules satisfying the requested condition of a minimal

number of covered target class examples, defined by the min_support parameter. Accep-

tance of all these rules as interesting subgroups is not desired because experiments

demonstrated that there are subsets of very similar rules which use almost the same

attribute values and have similar prediction properties. A solution to this problem is to

reduce generated rule sets so that they include only a relatively small number of rules with

diverse covering properties. The weighted covering approach has been proposed for the

selection of diverse rules in postprocessing [19,21].

Instead of rule postprocessing, the publicly available Data Mining Server directs rule set

construction by Algorithm DMS, which is also based on the weighted covering approach.

In its inner loop it calls the individual rule construction algorithm (Algorithm SD) and

selects from its beam only one best rule which is included into the output rule set. To enable

Algorithm SD to induce a different solution in each iteration, weights cðeÞ for examples

from the positive class are introduced and used in the quality measure which is defined as

follows:

q ¼
P

TP 1=cðeÞ
FPþ g

:

This is the same quality measure as in Algorithm SD except that the weights of true positive

examples are not constant and equal to 1 but defined by the expression 1=cðeÞ, changing

from iteration to iteration. Implementation details can be found in [21], and the pseudo-

code in Appendix B.

3.3.3. Sample run of the algorithms

Table 5 shows some of the rules induced for the data at stage C in the first loop of the

DMS algorithm, with four algorithm SD iterations. The used generalization parameter

value g is 10. The table includes the position of the rule in the beam after the iteration,

description of the rule, computed rule quality value q and rule covering properties on the

training set (TP and FP). It can be noticed that after the first SD iteration there are only rules

with one feature, after the second iteration there are rules with up to two features, and so on.

The iterative process stops after no further rule quality improvements are possible by

adding new features to the rule conditions in the beam.

In the concrete experiment, the medical expert selected the simple rule ECGhlv ¼
positive as the optimal final solution for level C although some rules with higher rule
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quality q have been detected. The reason is that the other rules were characterized by the

expert as non-intuitive and too complex.

3.4. Supporting active subgroup mining in DMS

Expert involvement is desired in all phases of the subgroup discovery process.

3.4.1. Expert-guided dataset selection

Consider the data table shown in Table 4 of Section 3.1.1, where guiding subgroup

discovery was presented. In Table 4 attribute Diag was selected as the target attribute,

which was denoted by the exclamation mark at the beginning of the target attribute name,

and attribute values 3 or higher were selected as the values discriminating the target class

instances from the others, which is denoted by the exclamation mark in front of the target

class values.

Attribute subset selection can be achieved by using a question mark (?) in front of the

attribute name that should be eliminated. In our experiments, reporting on subgroup

discovery at stages A–C, attributes of stages B and C were eliminated from the dataset in

the stage A experiments, and attributes of stage C were eliminated in stage B experiments

(in addition to all other non-stage A, B or C attributes): five exercise tests (including

exercise ECG ST segment depression), two echocardiography attributes, two vectorcar-

diography attributes, and three long-term continuous ECG recording attributes (including

Holter ECG ST segment depression).

Attribute subset selection was used for experiments at different stages A–C. In addition,

the expert may decide to temporary or permanently exclude from the induction process

some attributes that are already used in other rules, attributes which are expensive or hard

Table 5

Some ‘interesting’ subgroups discovered from stage C data in first iteration of the DMS algorithm with

generalization parameter value g ¼ 10

Rule Pos q TP FP

Beam after first SD iteration

ECGhlv ¼ positive 1 1.529 26 7

ECGrhyt ¼ positive 2 1.187 19 6

AGE > 63 3 1.166 42 26

FIB > 3:75 4 1.147 70 51

H < 171 10 1.098 56 41

Beam after second SD iteration

ECGhlv ¼ positive 1 1.529 26 7

FIB > 3:75 and H < 173 2 1.480 37 15

H < 171 and AGE > 55 8 1.400 42 20

Beam after third SD iteration

AGE > 57 and H < 172 and TR < 1:96 1 1.857 26 4

AGE > 53 and H < 173 and FIB > 3:35 5 1.708 41 14

Beam after fourth SD iteration

AGE > 53 and H < 173 and FIB > 3:22 and HR > 64 1 1.941 33 7

The second column is the rule position in the beam. Attribute abbreviations are described in Tables 1–3.
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to measure, or attributes which are unreliable. In the available CHD domain, it has been

found through experimentation that attribute present smoking is seldom used in the induced

rules although smoking is known as an important CHD risk factor. It has been also observed

that the negative present smoking status is more often correlated with very ill patients than

with healthy people simply because ill people stopped smoking after the occurrence of

serious disease symptoms. Practically, in the given dataset, the present smoking status does

not say anything about person’s smoking history; consequently, this attribute has been

eliminated in all the experiments.

Instance subset selection is enabled as well. This is achieved by using a question mark

(?) in front of the class value of the instance that should be eliminated. Instance subset

selection can be applied in order to enable induction of more coherent subgroups. For

example, at data stage A the patients have been partitioned according to sex in two subsets

and a subgroup has been induced for each of them separately. Additionally, the expert may

decide to permanently exclude a patient record from the dataset if it is an outlier, detected

by the noise and outlier detection procedure. Examples of detected outliers are described in

the following section.

3.4.2. Noise and outlier detection

The noise and outlier detection procedure can not guarantee that the detected examples

indeed represent errors or outliers or that all such examples can be detected. Detailed expert

analysis is necessary to confirm whether the noise and outlier detection has been successful

and if so, what is the reason for the occurrence of such instances.

The iterative usage of the noise detection procedure has enabled the detection of some

mistakes and imprecisions in the data [20]. One problem has been that the diagnostic

classification was not systematically performed throughout the database. In a few cases the

medical doctor decided to change the patient classification after the patient record has been

detected as noisy. It was also shown that some attributes were inconsistently measured. For

example, exercise ST segment depression has been measured as low also for patients that

have been in such a bad condition that they could not sustain the exercise test. Such

measurement values had to be transformed to value ‘unknown’. We have managed also to

detect a healthy person with incorrectly attributed data from an ill patient with the same

name. The noise detection procedure was the one to notice this serious mistake which has

been later corrected in the official hospital records.

All the patients detected by the noise detection procedure which are shown in Fig. 2 are

cases that can be interpreted as outliers. Three of them are from the non-target class

(patients with non-confirmed CHD) which have relatively high value of ECG ST segment

depression during exercise. This is as a very important disease indicator, as confirmed by

our experiments. In all three cases echocardiography and vectorcardiography results are

negative, demonstrating their correct classification despite of the bad exercise ECG results.

By a more detailed analysis it was found that the analysed patients, although different in

age and sex, were all rather fat (body mass index near to 30). The two remaining detected

noisy cases are from the CHD class; one of them is a very heavy CHD patient with

diagnosed cardiomyopathia dilatativa and the second one is a confirmed CHD patient with

an a-typical CHD that can be detected by echocardiography and myocardial perfusion

imaging.
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These observations demonstrate how the analysis of the detected noisy examples or

outliers may help the expert in data, disease, and diagnostic procedures understanding.

3.4.3. Parameter setting

In subgroup discovery, the expert is involved in guiding the search for ‘interesting’

subgroups based on the existing expert knowledge. For the coronary heart disease risk

group detection problem used in this study, an ideal subgroup is described by a rule that is

correct for many (or all) target class cases (CHD patients), and incorrect for all non-target

class cases (healthy subjects). In practice, a good subgroup includes many target class

cases, but also some healthy people (false positives). By allowing the number of false

positives to increase, which can be achieved by increasing the value of generalization

parameter g of the SD algorithm, the domain expert can guide the system to induce more

general subgroups of patients, at a cost of covering an increased number of false positives.

In this way, the generalization parameter enables the expert to induce different subgroups

from the same dataset. As mentioned in Section 3.4.1, subgroup variation can be achieved

also by selecting a subset of attributes to be used in rule induction. In the CHD problem,

this corresponds to risk factor selection. By combining these two techniques the expert may

interactively guide the inductive search process through many iterations until interesting

subgroups have been detected.

In addition to the g parameter, there are other parameters whose values need to be

adjusted by the user (or the default values are used). All the parameters, their meaning and

the default values are listed below.2


 g: the generalization parameter (0:1 < g < 100, default value ¼ 1),


 number: the maximum number of subgroups induced by the DMS algorithm (default

value ¼ 1),


 min_support: minimal support for rule acceptance (default value ¼
ffiffiffi
P
p

=E, where P is

the number of target class examples in E) which indirectly defines the minimal number

of target class examples which must be covered by every subgroup,


 beam_width: number of rules in the ‘beam’ of rules that the algorithm evaluates as ‘best’

in each iteration of the beam search Algorithm SD (default value ¼ 20),


 max_number_of_iterations: maximal number of iterations of Algorithm SD (default

value ¼ 5) which defines maximal number of features in the generated rule and which

indirectly defines rule complexity, and


 covering_weight_value: number which is added to the cðeÞ in the DMS algorithm if e is

covered by the constructed rule (default value ¼ 1) which indirectly affects the diversity

of induced subgroups.

The process of expert-guided subgroup discovery was performed as follows. For every

data stages A–C, the DMS algorithm was used a number of times with different g parameter

values in the range 0.5–100, and a fixed number of selected output rules equal to 3. The rules

induced in this iterative process were shown to the expert for selection and interpretation. The

inspection of 15–20 rules for each data stage triggered further experiments. Concrete expert

suggestions were to limit the number of features in rule body and to try to avoid the generation

2 In the publicly available Data Mining Server, the users can change only the first two parameters.
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of rules whose features would involve expensive and/or unreliable laboratory tests. Con-

sequently, we have performed further experiments by intentionally limiting the feature space

and the number of iterations in the main loop of Algorithm SD.

3.4.4. Expert-guided subgroup selection

The main selection criterion used by the expert was the intuitive understanding of the

induced subgroups in terms of the logical connections of features in the induced rule. For

example, the rules with attributes like patient’s height and trygliceride value were not

intuitive, in contrast to rules with attributes body mass index and trygliceride value. The

expert also disliked the rules that included features which may be the result of medica-

mental therapy (like the low total cholesterol value) or changed life style (no stress, diet) of

the known CHD patients.

Actionability of induced subgroups is also an important issue. In this sense it is important

howeasilyandreliably theattributes includedinto therulecanbemeasured.Attributes sexand

age are very favourable while stress and especially present smoking status were considered as

unreliable, as their usecould result in unactionable knowledge. Furthermore, the cost and time

needed for measuring attribute values is also important. If the cost and complexity of exercise

and long ECG measurement were low then they could be included in the standard general

practice, resulting in significantly increased quality of early CHD detection.

Finally, estimated TPr and FPr values are decisive. For the purpose of early disease

detection, subgroups with relatively high FPr are acceptable. Nevertheless, during the

induction and selection process the intention was to keep it below 10% whenever possible.

The necessary TPr of every subgroup is not very high. Values above 25% are acceptable. But

the intention is to induce different subgroups to cover diverse population segments in order

that the set of induced subgroups covers the intended 85–95% of the total CHD population.

4. Results: coronary heart disease risk groups, their interpretation
and deployment

The process of expert-guided subgroup discovery was performed for every data stages

A–C, using the DMS algorithm a number of times with different g parameter values. In this

iterative active mining process, the expert has selected five interesting CHD risk groups.

Their description, interpretation and deployment potential are described below.

4.1. Results of subgroup discovery

Five interesting subgroups A1, A2, B1, B2, C1 shown in Table 6 were selected from a set

of subgroup descriptions induced by running the DMS algorithm with g parameter values

in the range 0.5–100 and by intentionally limiting the feature space and the number of

iterations in the main loop of the SD algorithm. Subgroups A1, A2, B1, B2 and C1 were

selected using two main criteria: intuitive understanding of subgroups and the actionability

of subgroup descriptions for targeting a population at risk for CHD which would need to be

called to the institute for further medical testing. The features describing the induced

subgroups are called the principal risk factors.
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4.2. Subgroup interpretation

The next step in the subgroup discovery process is expert description of discovered

subgroups and the interpretation of potential connections among the detected subgroup

characteristics. To support this process and provide further characterization of subgroups,

statistical differences in distributions were computed for two populations: the target

population consisting of true positive cases (CHD patients included into the analyzed

subgroup), and the reference population consisting of all non-target class examples (all the

healthy subjects). Statistical differences in distributions for all the descriptors (attributes)

between these two populations were tested using the w2-test with 95% confidence level

(P ¼ 0:05). For this purpose, numerical attributes were partitioned in up to 30 intervals so

that in every interval there were at least five instances. Among the attributes with

significantly different distributions there were always those that form the features

describing the subgroups (the principal risk factors), but usually there were also other

attributes with significantly different value distributions. These attributes are called

supporting attributes, and the features formed of their values that are characteristic for

the discovered subgroups are called supporting risk factors. Supporting factors are very

important to achieve pattern descriptions that are reasonably complete because medical

decision process requires as much supportive evidence as possible [26].

The decision whether the supporting risk factors will be used to support user’s

confidence in the subgroup description is left to the expert, regardless of their actual

statistical significance. In the CHD application, the expert has decided whether the

proposed factors are indeed interesting, how reliable they are and how easily they can

be measured in practice. The resulting supporting risk factors are listed in Table 7.

Table 6

Induced subgroups in the form of rules

Subgroup Expert Selected Subgroups g

A1 CHD  F.A. ¼ positive and AGE > 46 14

A2 CHD  BMI > 25 and AGE > 63 8

B1 CHD  T.CH. > 6.1 and AGE > 53 and BMI 	 30 10

B2 CHD  T.CH. > 5.6 and FIB > 3:7 and BMI 	 30 12

C1 CHD  ECGhlv ¼ positive 10

Rule conditions are conjunctions of principal factors. Subgroup A1 is for male patients, subgroup A2 for female

patients, while subgroups B1, B2, and C1 are for both male and female patients. The subgroups are induced from

different attribute subsets with corresponding g parameter values indicated in column g.

Table 7

Supporting risk factors for CHD patients belonging to subgroups A1, A2, B1, B2 and C1

Subgroup Expert selected supporting risk factors for CHD patients

A1 Psychosocial stress, present smoking, hypertension, overweight

A2 Positive family history, slightly increased LDL cholesterol, hypertension,

normal but decreased HDL cholecterol

B1 Increased triglycerides value

B2 Positive family history

C1 Positive family history, hypertension, diabetes mellitus
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4.2.1. Interpretation of rules for stage A

At stage A, there are only anamnestic information and physical examination results

available. At this stage it was rather difficult to find subgroups with a relatively small

number of false positive predictions. The reason is a very restricted amount of available

information. In order to make the problem easier, separate subgroups were developed for

male and female patients.

4.2.1.1. Subgroup A1 for male patients (CHD positive family history and age over 46

years). The sensitivity of rule A1 for men is very good (47%) but its false positive rate is

extremely high as well (27%), if measured on the training set. Supporting characteristics

are psychosocial stress, present cigarette smoking, hypertension, and overweight. Both

principal risk factors for this rule are non-modifiable. Positive family history is a well

known and important risk factor, indicating the need for careful screening of other risk

factors. The selected age margin in the second factor is rather low but it is in accordance

with the existing medical experience. This low age margin is good for prevention and early

CHD diagnosis, although typical patients in this subgroup are significantly older. The rule

describes well the existing medical knowledge about CHD risk but its applicability is rather

low because of the high estimated false positive rate.

4.2.1.2. Subgroup A2 for female patients (CHD  body mass index over 25 kg m�2 and

age over 63 years). This simple rule is very good for the female population. Its sensitivity

is about 50% and false positive rate is below 10%. Supporting characteristics are positive

family history, hypertension, increased LDL cholesterol values and normal but decreased

HDL cholesterol values. Body mass index over 25 (the first principal risk factor) is exactly

the generally excepted margin meaning overweight [32]. It is well known that obesity (high

body mass index) strongly and positively correlates with the CHD rate. Typical values of

the measured body mass index of CHD patients in this subgroup are significantly over the

margin of 25. It is interesting to notice that the male population at the same age is

significantly less sensitive to the overweight risk factor.

4.2.2. Interpretation of rules for stage B

At stage B, which includes anamnestic and physical examination results as well as basic

laboratory tests, two rules were selected. The first rule has a high risk group detection

potential: it includes total cholesterol as the only laboratory test result, and this risk factor

can be easily and inexpensively measured. The second rule, describing a subgroup by a

combination of two risk factors based on blood tests, demonstrates that also values close to

the generally accepted normal values for these risk factors may be significant for early

CHD risk detection and prevention.

4.2.2.1. Subgroup B1 (CHD total cholesterol over 6.1 mmol l�1 and age over 53 years

and body mass index below 30 kg m�2). This rule is characteristic for an older part of the

population, especially for women (sensitivity about 30%, false positive rate about 10%, all

estimated on the training set). For the male population, the sensitivity is about 25% and

false positive rate 10%. Typical age of people in this subgroup is 65 years for women and

61 years for men. Further statistical analysis shows that, interestingly, typical patients in B1
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do not have problems with overweight and hypertension. Moreover, very high body mass

index is an important contraindication for this CHD patient group because the increased

cholesterol value is mainly due to overweight. The only supporting risk factor is increased

triglycerides value (typically about 2.5 mmol l�1, reference values from 0.9 to 2.0 [32])

which is more often detected for men. The female patients in this subgroup have HDL

cholesterol values about 1.3 mmol l�1 (reference values higher than 0.9) which is generally

accepted as a normal value but which is significantly different from the typical values for

the healthy part of the female population (2.2 mmol l�1).

4.2.2.2. Subgroup B2 (CHD  total cholesterol over 5.6 mmol l�1 and fibrinogen over

3.7 g l�1 and body mass index below 30 kg m�2). This rule represents a group of CHD

patient with similar properties for male and female patients. Its supporting risk factor is

positive family history but one can also notice increased triglycerides values (typically

about 2.5 mmol l�1, reference values from 0.9 to 2.0), increased LDL cholesterol value

(typically about 4.5 mmol l�1, reference values less than 3.0), and borderline HDL

cholesterol value (typically about 1 mmol l�1, reference values higher than 0.9 [32]).

Typical patients in B2 do not have problems with overweight, hypertension and cigarette

smoking. Very high body mass index is a contraindication for this CHD patient

group. Although the main subgroup properties are similar for both genders, a

representative female in this subgroup is about 66 years old while a male is 10 years

younger. The subgroup strongly correlates with subgroup B1 especially for women. The

rule has an estimated sensitivity of about 30% and false positive rate about 15%. The

discovered rule is important, demonstrating similar symptoms for male and female patients

but at significantly different age.

4.2.3. Interpretation of rules for stage C

Stage C additionally includes test results of ECG at rest. At this stage there are many

different acceptable rules and some of them have a relatively low false positive rate.

4.2.3.1. Subgroup C1 (CHD  left ventricular hypertrophy). This rule covers male and

female patients above the age of 55 years. Rule sensitivity is 25% and false positive rate

about 5%. Left ventricular hypertrophy is a well-known risk factor which includes many

other known CHD risk factors like hypertension and obesity. The supporting risk factor

detected for this subgroup are positive family history, hypertension and diabetes mellitus.

The practical importance of the discovered rule is that it has a relatively low error rate and

that it does not correlate strongly with other rules. This means that its combination with any

of the other rules can significantly increase the sensitivity of the CHD screening process.

4.2.4. Comparison of induced subgroups

By investigating all the five rules separately for men and women, some significant and

interesting global differences among the subgroups can be observed; this may turn out to be

important for the improved understanding of disease manifestations.

First well-known observation is that there are significant differences between male and

female patients and that women are typically faced with CHD risk about 10–15 years later

than men. From this perspective it is interesting to observe that subgroup C1 is the only one
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which equally well describes patients of both genders without the difference in age. This

rule is based on the heart patologic changes (left ventricular hypertrophy) and it

particularly strongly correlates with decreased HDL cholesterol and increased fibrinogen

values. In this rule other typical risk factors are also very similar for both genders.

Another important observation is that subgroups B2 and C1 are similar in the sense that

they apply almost equally well to both genders but subgroup B2 has a significant delay of 10

years in favor of women. It seems that this effect is mainly due to the fibrinogen risk factor.

When comparing rules induced separately for the two genders (A1 and A2) or which have

different properties depending on the gender (B1), quite large differences in supporting risk

factors can be observed: total cholesterol and overweight turn out to be characteristic for

women, while positive family history and stress are particularly characteristic for men.

4.3. Deployment potential of induced subgroup descriptions

The induced subgroups can be used in the prevention process at an individual or at a

population level.


 Individual level: If a person belongs to any of the induced risk groups, the person should

come to a specialized medical institution for further medical testing.


 Population level: Induced risk group descriptions can be publicly announced with a call

that people who recognize themselves as being at CHD risk should come for further tests

to a specialized medical institution. This should be done with precaution because of the

potential abundance of people, both those that really need help and those who did not

understand the risk group descriptions. Alternatively, the risk group descriptions can be

used to direct systematic prevention testing to subpopulations in which proportionally

many CHD patients can be expected. For both purposes subgroups A1 and A2 seem

especially appropriate.

Risk group descriptions can be, in some of their elements, considered also as new pieces of

medical knowledge that can help medical experts in improving their decision making

processes. For example, high total cholesterol is in accordance with medical knowledge a

high risk factor for CHD and it is also known that high total cholesterol is characteristic for fat

people. In this context it is interesting to notice that risk groups B1 and B2 describe people

that have high total cholesterol and who are not very fat. In B1, this property is correlated with

age and in B2 with high fibrinogen value. In medical literature and in normal medical

practice, medical practitioners usually pay attention to individual risk factors, while

combined risk factors are harder to observe, particularly when occurring for a non-typical

population which is, in our case, relatively slim people with high total cholesterol value.

5. Risk group evaluation

The detected risk groups, described in Section 4, have estimated false positive rates

between 5 and 27% on the training set. Therefore, the rules should not be considered as the

ultimate prognostic rules to be used in decision making process. Instead, their primary

function is in early detection of CHD from anamnestic data and routine laboratory tests of
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risk factors and the definition of the risk population groups which should undertake non-

invasive cardiovascular diagnostic procedures before the occurrence of first disease

symptoms. But even for this purpose the induced rules can not be used unconditionally.

The obtained classification quality may significantly depend on the properties of the tested

population as well as on the data collection standards.

The evaluation tests were performed on two independent sets of people: the first one

collected in the same medical institution but with a very different distribution of ill and

healthy people and collected about 1 year after the training set, and the second one

collected during medical prevention testing of employed people about 2 years after the

training set collection.

5.1. Evaluation on an independent test set of patients from the same

biased population

An independent set of 50 CHD patients and 20 people without CHD constitutes the first

test set. The results show that the rules are successful in detecting CHD patients. About

90% of CHD patients were covered by at least one out of the five rules. The obtained results

for CHD patients are summarized in Table 8, while Table 9 shows the summary TPr and

FPr results for CHD and non-CHD patients, respectively. The measured sensitivity values

on the test set for rules A1, B2, and C1 (85, 42 and 82%, respectively, presented in the test

set TPr column of Table 8) are significantly higher than the values (47, 32 and 23%,

respectively) computed on the set of patients used for subgroup discovery. For rules A2 and

B1 the values are 41 and 36%, which is comparable to estimated values 48 and 29% on the

test set.

The last column of Table 8 shows the percentages of satisfied supporting factors for

subgroups A1, A2, B1, B2 and C1 on the test set (supporting risk factors for each rule are

listed in Table 7). For subgroups A1, A2, and C1 which have more then one supporting

factor the last column of Table 8 lists the mean values. The values between 60 and 93%

demonstrate the relevance of selected supporting factors. Most of these factors have a

higher rate for the specific subgroup than for the whole CHD population. For example,

subgroup B1 has one supporting factor which is increased trygliceride value. Trygliceride

value is known as an important risk factor and in our test group about 60% of all CHD

patients have this value above 2.0 mmol l�1. But patients described by subgroup B1 have

Table 8

Summary of results on an independent test set of 50 CHD patients from the institute

Subgroup Sensitivity (TPr) Supporting factors

Training

set (%)

Test set

(%)

Training set

(no. of factors)

Test set (percentage

satisfied)

A1 47 85 4 60

A2 48 41 4 79

B1 29 36 1 81

B2 32 42 1 93

C1 23 82 3 76

D. Gamberger et al. / Artificial Intelligence in Medicine 28 (2003) 27–57 47



increased trygliceride value above this limit in more than 80% of cases. A similar effect can

be observed with positive family history for subgroup B2 and with HDL cholesterol values

below 1.0 mmol l�1 for subgroup A2.

5.2. Evaluation on an independent validation set gathered from the

general population

An independent set of 200 people was used to test the practical applicability of the

induced rules for CHD risk group detection. The majority of this set are employees of two

large Croatian companies. These companies paid for medical prevention testing of their

employees, hence the available dataset can be assumed to represent a part of the general

population. We call this set a small epidemiological study set although it is too small to give

reliable epidemiological results, and includes only a part of the interesting population for

CHD screening. For instance, unemployed or retired people as well as children have not

been included in this set.

In this validation set there are 123 males and 77 females (age between 18 and 65 years,

median value 46 years). By prevention tests, 30 (15%) suspect CHD patients were detected,

but the final diagnoses for these people are still unknown (this is however not very relevant

for this study because detection of CHD risk groups is our main goal, not the actual

diagnosis). In this study, suspect CHD cases are defined as those individuals with ST

segment depression of 1 mm or higher either during ECG exercise test or during 24 h ECG

(Holter). In the male population, there are 20 (16%) suspect CHD cases and 10 (13%) cases

in the female population.

Table 9 shows the sensitivity (true positive rate TPr) and the false alarm (false positive rate

FPr) for the five subgroups. The column ‘employee set’ shows the results obtained on the

independent set of 200 individuals, while the columns ‘training set’ and ‘test set’ summarize

values measured on the training and the test set which were already analysed in Sections 4 and

5.1, respectively. Analysis of the ‘employee set’ column of Table 9 shows that rules A2, B1,

and C1 have low false positive rates in contrast to rules A1 and especially B2. The comparison

Table 9

Summary of sensitivity (TPr) and false positive rate (FPr) results for rules A1, A2, B1, B2 and C1 measured on

the training and the test datasets from the specialized medical institution, and on an independent employee

dataset

Subgroup Training set (Pos ¼ 111,

Neg ¼ 127)

Test set (Pos ¼ 50,

Neg ¼ 20)

Employee set (Pos ¼ 30,

Neg ¼ 170)

TPr (%) FPr (%) TPr (%) FPr (%) TPr (%) FPr (%)

A1 47 27 85 78 95 28

A2 48 7 41 27 60 6

B1 29 9 36 20 37 5

B2 32 13 42 15 83 48

C1 23 5 82 40 27 8

Expert – – – – 97 18

In the last dataset, the positive (suspected CHD) cases are individuals which have ST segment depression of

1 mm or higher either during exercise or long-term ECG measurements.
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of the results on the training set and the employee set shows good agreement of estimated and

measured results, except for rule B2. The good news is that for most rules the measured results

are better (higher sensitivity and lower false positive rates) than the corresponding estimated

values. In this sense the measured results are very promising.

The last line of the table shows the results of domain expert classification for the

employee data. Expert results are better than any of the results obtained by the induced

rules, but such differences were expected. The experiment was designed favorably for the

domain expert who had all three data levels available at the time of his classification.

Moreover, the expert is not a general practitioner but the cardiologist working in the

specialized medical institution. Nevertheless, the false positive rates of 5–8% of rules A2,

B1, and C1 are significantly better compared to the 18% false positive rate achieved in

expert classification.

The unexpectedly high false positive rate of rule B2 attracted our special attention. The

high sensitivity of the rule seems to be the consequence of the fact that the rule covers more

than 50% of the whole tested population. It is interesting to notice that on the training set

the same rule covers only about 20% of the examples. This result demonstrates significant

differences between the general population (employee dataset) and patients of the

Cardiovascular Institute (training set). This means that we have to be very careful when

estimating properties of rules induced from very biased datasets and that only relevant

epidemiological studies may prove the usefulness of induced rules.

The dissatisfying results for rule B2 stimulated further result analysis, which showed

that fibrinogen measurements on the employee dataset have caused the problem. Value of

3.7 g l�1 is typically accepted as normal upper limit for fibrinogen and for the employed

people this or higher value has been measured for 60% of the validation set. The problem

has been detected in the laboratory measurement procedure which has changed between

collecting data for the training and the employee datasets. According to the suggestions of

the International Federation of Clinical Chemistry (IFCC), temperature of laboratory

testing has changed from 30 to 37 �C. Malfunction of rule B2 was the first evidence in the

institute that the increase of temperature in laboratory measurements can have significant

influence on the data values.

6. Related work

This section gives some links to related work in active mining, decision tree and rule

learning, and subgroup discovery.

6.1. Active mining

The need of expert involvement in the knowledge discovery process has been recognized

long ago, especially emphasizing the need of expert involvement in knowledge acquisition

for expert systems [11,12]. For instance, in the knowledge acquisition research community,

lots of attention was devoted to the development of ripple down rules (RDR) which allow

expert-guided incremental rule learning by including exceptions to the current rule set

[8,9].
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Recent developments in data mining and knowledge discovery in databases also show

awareness of the need for expert’s support of the knowledge discovery process [16]. The

need for user interactivity in subgroup discovery has been addressed in [42], describing a

system developed in the KESO project (Knowledge Extraction for Statistical Offices,

http://orgwis.gmd.de/projects/KESO/). More generally, the CRISP-DM methodology

(Cross-Industry Standard Process for Data Mining, http://www.crisp-dm.org) [4] also

emphasizes the need of a feedback loop at every stage of the knowledge discovery process.

The active mining approach to knowledge discovery has further emphasized user-

centered mining and user interaction/reaction, to address the need for actively collecting

relevant data sources, mining useful knowledge from different forms of data sources and

promptly reacting to situation change. The term active mining [34,35], propagated by a

large Japanese data mining project (2001–2005), represents a collection of activities each

solving a part of this need, but collectively achieving the mining objective through the

spiral effect of several interleaving data mining steps.

6.2. Related decision tree and rule learning approaches

In symbolic predictive induction, the two most common approaches are decision tree

learning [1,36] and rule learning [33]. At a first glance it may seem that standard decision tree

and rule learning algorithms can be used for the task of subgroup discovery and risk group

detection. In this section we give arguments why the presented approach to subgroup

discovery is advantageous to standard decision tree and rule learning as a solution to this task.

Decision tree learning algorithms like the ones implemented in CART [1], ID3 [36], its

followers many others are inappropriate for the subgroup discovery task. The reason is that

the rules which can be formed from paths leading from the root node to class labels in the

leaves represent discriminating descriptions, formed from properties that best discriminate

between the classes, and not from descriptions characterizing the individuals in the subgroup.

The goal of rule learning, on the other hand, is to generate models, one for each class,

inducing class characteristics in terms of properties occurring in the descriptions of training

examples. Classification rule learning results in characteristic descriptions, generated

separately for each class by repeatedly applying the covering algorithm. Classical rule

learning algorithms [33,5,6], as well as more sophisticated rule learners like RL [30], RIPPER

[6], SLIPPER [7] have been designed to construct classification and prediction rules.

As opposed to model construction, subgroup discovery aims at discovering individual

‘patterns’ of interest, representing population subgroups. Standard classification rule

learning algorithms can not appropriately address the task of subgroup discovery for

two main reasons: first, they use inappropriate search heuristics optimizing rule accuracy,

and second, they use the covering algorithm for rule set construction.


 Various rule evaluation measures and heuristics have been studied for subgroup

discovery [25,43], aimed at balancing the size of a group (referred to as factor g) with

its distributional unusualness (referred to as factor p). The properties of functions that

combine these two factors have been extensively studied (the so-called ‘p-g-space’,

[25]). One of the heuristics of this kind is the weighted relative accuracy heuristic,

defined as WRAccðClass CondÞ ¼ pðCondÞðpðClassjCondÞ � pðClassÞÞ and used
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in [39,28], which also trades off the generality of a rule (pðCondÞ, i.e. rule coverage) and

its relative accuracy (pðClassjCondÞ � pðClassÞ). Besides these ‘objective’ measures of

interestingness, some ‘subjective’ measure of interestingness of a discovered pattern

can be taken into account, such as actionability (‘a pattern is interesting if the user can

do something with it to his or her advantage’) and unexpectedness (‘a pattern is

interesting to the user if it is surprising to the user’) [38].


 The main deficiency of the covering algorithm is that only the first few induced rules may

be of interest as subgroup descriptors with sufficient coverage and significance. Subse-

quently induced rules are induced from biased example subsets, i.e. subsets including only

positive examples not covered by previously induced rules, which inappropriately biases

the subgroup discovery process. As a remedy to this problem we have proposed to use the

weighted covering algorithm (Algorithm DMS), in which the subsequently induced rules

allow for discovering interesting subgroup properties of the entire population. The

weighted covering algorithm modifies the classical covering algorithm in such a way

that covered positive examples are not deleted from the current training set. Instead, in

each run of the covering loop, the algorithm stores with each example a count that shows

how many times (with how many rules) the example has been covered so far. This allows

the algorithm to discover less biased rules discovering interesting subgroup properties of

the entire population, still covering different population segments. Instance weights play

an important role also in boosting [17] and alternating decision trees [37]. Instanceweights

have been used also in variants of the covering algorithm implemented in rule learning

approaches such as SLIPPER [7], RL [30] and DAIRY [23].

6.3. Related subgroup discovery approaches

Two most important systems in the field of subgroup discovery are, however, EXPLORA

[25] and MIDOS [43,44]. The first system treats the learning task as a single relation

problem, i.e. all the data are assumed to be available in one table (relation), while the

second one extends this task to multi-relation databases, which is related to a number of

other learning tasks [13,31,41], mostly in the field of Inductive Logic Programming

[14,27]. The most important features of EXPLORA and MIDOS, related to this paper,

concern the use of heuristics for subgroup discovery, briefly outlined in Section 6.2 above.

Note that some approaches to association rule induction can also be used for subgroup

discovery. For instance, the APRIORI-C algorithm [24], adapting association rule induc-

tion to classification rule induction, outputs individual classification rules with guaranteed

support and confidence with respect to a target class. If a rule satisfies also a user-defined

significance threshold, an induced APRIORI-C rule is an independent ‘chunk’ of knowl-

edge about the target class, which can be viewed as a subgroup description with guaranteed

significance, support and confidence. Similarly, the confirmation rule concept, introduced

in [19] and used as a basis for the subgroup discovery algorithm in this paper, utilizes the

minimal support requirement as a measure which must be satisfied by every rule in order to

be included in the induced confirmation rule set.

Recent approaches to subgroup discovery aim at overcoming the problem of the

inappropriate bias of the standard covering algorithm discussed in Section 6.2. The

recently developed subgroup discovery algorithms CN2-SD [28] and RSD [29] use the
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so-called weighted covering algorithm, similar to the one implemented in Algorithm DMS

described in this paper.

7. Conclusions

The paper shows that active subgroup mining through expert-guided subgroup discovery

may lead to interesting results even in cases when relatively small and very biased datasets

are available. The induced descriptions of coronary heart disease risk groups illustrate what

results can be obtained by the novel subgroup mining methodology. Despite the biased data

available, the presented risk group descriptions seem to be important both as chunks of

novel medical knowledge about CHD as well as decision rules which can be used to help

decision making at a level of one person (the person should be invited to a specialized

medical institution for further medical testing) or at a global level to direct systematic CHD

prevention.

There are indications that the active subgroup discovery methodology, applied in this

work to CHD risk group detection, will be interesting also for other medical (and non-

medical) data analysis and knowledge discovery applications. The proposed approach is

based on a combination of machine learning subgroup detection and statistical risk factor

analysis. For both steps the expert knowledge and experience are the main guiding factors.

Putting the medical expert in the center of the knowledge discovery process is one of the

main emphasis of this work. In this context publicly available tools on the internet are very

important: in the future we plan to add additional options and functionality to the Data

Mining Server
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Appendix A. Rule construction by Algorithm SD

Algorithm SD takes as its input the complete training set E and the feature set L, where

features l 2 L are logical conditions constructed from attribute values describing the

examples in E (see Fig. 4). The main algorithm parameter is g. There are two additional

parameters which are typically not adjusted by the user: min_support and beam_width. The

output of the algorithm is set S of beam_width different rules with highest q values. The

rules have the form of conjunctions of features from L.

The algorithm initializes all the rules in Beam and New_beam by empty rule conditions.

Their quality values qðiÞ are set to zero (step 1). Rule initialization is followed by an infinite
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loop (steps 2–12) that stops when, for all rules in the beam, it is no longer possible to

further improve their quality. Rules can be improved only by conjunctively adding

features from L. After the first iteration, a rule condition consists of a single feature, after

the second iteration up to two features, and so forth. The search is systematic in the sense

that for all rules in the beam (step 3) all features from L (step 4) are tested in each iteration.

For every new rule, constructed by conjunctively adding a feature to rule body (step 5)

quality q is computed (step 6). If the support of the new rule is greater than min_support

and if its quality q is greater than the quality of any rule in New_beam, the worst rule

in New_beam is replaced by the new rule. The rules are reordered in New_beam

according to their quality q. At the end of each iteration, New_beam is copied into

Beam (step 11). When the algorithm terminates, the first rule in Beam is the rule with

maximum q.

A necessary condition (in step 7) for a rule to be included in New_beam is that it must be

relevant. The new rule is irrelevant if there exists a rule R in New_beam such that true

positives of the new rule are a subset of true positives of R and false positives of the new

rule are a superset of false positives of R. After the new rule is included in New_beam it

may happen that some of the existing rules in New_beam become irrelevant with respect to

this new rule. Such rules are eliminated from New_beam during its reordering (in step 8).

Relevance testing ensures that New_beam contains only different and relevant rules.

Fig. 4. Heuristic beam search rule construction algorithm for subgroup discovery.
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Appendix B. Rule set construction by Algorithm DMS

Algorithm DMS iteratively calls Algorithm SD and selects from its beam the single best

rule to be included into the output set SS (see Fig. 5). Parameter number determines the

total number of induced rules. For every example e 2 P there is a counter cðeÞ. Initially, the

output set of selected rules is empty (step 1) and all counter values are set to 1 (step 2). After

rule selection cðeÞ values for all target class examples covered by the selected rule are

incremented by 1 (step 5). Weights of true positive examples used in the quality measure q

are not constant and equal to 1 but defined by expression 1/cðeÞ, changing from iteration to

iteration (step 4). The main reason for the described implementation is to ensure the

diversity of induced subgroups even though, because of the short execution time limit on

the publicly available server, a low beam_width parameter value in Algorithm SD had to be

set (the default value is 20).
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[19] Gamberger D, Lavrač N. Confirmation rule sets. In: Proceedings of 4th European Conference on Principles

of Data Mining and Knowledge Discovery (PKDD2000). Berlin: Springer; 2000. p. 34–43.
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