
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Universidad Granada]
On: 2 July 2010
Access details: Access Details: [subscription number 908137007]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713191765

NOISE DETECTION AND ELIMINATION IN DATA PREPROCESSING:
EXPERIMENTS IN MEDICAL DOMAINS
Dragan Gamberger; Nada Lavrac; Saso Dzeroski

To cite this Article Gamberger, Dragan , Lavrac, Nada and Dzeroski, Saso(2000) 'NOISE DETECTION AND
ELIMINATION IN DATA PREPROCESSING: EXPERIMENTS IN MEDICAL DOMAINS', Applied Artificial Intelligence,
14: 2, 205 — 223
To link to this Article: DOI: 10.1080/088395100117124
URL: http://dx.doi.org/10.1080/088395100117124

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713191765
http://dx.doi.org/10.1080/088395100117124
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Applied Arti�cial Intelligence, 14 :205 223, 2000
Copyright 2000 Taylor & FrancisÓ
0883 ± 9514/00 $12.00 1 .00

u NOISE DETECTION AND
ELIMINATION IN DATA
PREPROCESSING:
EXPERIMENTS IN
MEDICAL DOMAINS

DRAGAN GAMBERGER
Rudjer Bos) kovicÂ Institute, Zagreb, Croatia

NADA andLAVRACÏ SASÏ O DZÏ EROSKI
Joz) ef Stefan Institute, Ljubljana, Slovenia

Compression measures used in inductive learners, such as measures based on the minimum
description length principle, can be used as a basis for grading candidate hypotheses.
Compression± based induction is suited also for handling noisy data. This paper shows that a
simple compression measure can be used to detect noisy training examples, where noise is
due to random classi�cation errors. A technique is proposed in which noisy examples are
detected and eliminated from the training set, and a hypothesis is then built from the set of
remaining examples. This noise elimination method was applied to preprocess data for four
machine± learning algorithms, and evaluated on selected medical domains.

INTRODUCTION

In an ideal inductive learning problem, the induced hypothesis H
‘‘agrees’’ with the classi�cations of training examples E and performs as a
perfect classi�er on yet unseen instances. In practice, however, it frequently
happens that data given to the learner contain various kinds of errors, either
random or systematic. Random errors are usually referred to as noise.
Therefore, in most real± life problems the success of machine learning very
much depends on the learner’s noise± handling capability, i.e., its ability of
appropriately dealing with noisy data. Although noise in training examples
may be due to erroneous attribute values and erroneous class labels,
machine± learning algorithms usually treat noisy examples as being mis±

labeled.
It should be noted that the term noise used in this work does not refer

only to errors in the data ; as opposed to the standard terminology, noise in

Address correspondence to Dragan Gamberger, Rudjer Bos) kovic Institute, Bijenicka 54, 10000
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206 D. Gamberger et al.

this work refers to errors (incorrect examples), as well as outliers (correct
examples representing some relatively rare subconcept of the target theory).

In this work, a target theory is de�ned as the source of correct examples.
A learning task is to �nd, from a given set of training examples E, a model
for the target theory. In an ideal situation, E consists of correct examples
only, and the induced model, called a target hypothesis, is the representation
of the target theory in the selected hypothesis language. In real± life prob±

lems, however, the training set E may include erroneous data.
The problem of noise handling has been extensively studied in attribute±

value learning. This problem has been approached in diŒerent ways. Noise±

handling mechanisms can be incorporated in search heuristics (e.g., Mingers,
1989) and in stopping criteria (e.g., Clark & Boswell, 1991) used in hypothe±

sis construction. Hypotheses ful�lling stopping criteria may further be evalu±

ated according to some quality measure, giving a preferential order of
hypotheses. In addition, the induced hypotheses can be subjected to some
form of postprocessing, such as postpruning and simplifying of decision trees
(e.g., Mingers, 1989 ; Quinlan, 1987 ; Cestnik & Bratko, 1991). Compression
measures (Muggleton et al., 1992), based on the minimum description length
(MDL) principle (Rissanen, 1978), evaluate candidate hypotheses by a heu±

ristic, integrating a measure of complexity (simplicity or understandability)
and correctness (expected accuracy). Compression measures can also be used
for noise handling.

Systems employing any of the above techniques can be called noise±

tolerant systems since they try to avoid over�tting the possibly noisy train±

ing set. A noise± handling technique proposed in this paper is diŒerent : it
detects and eliminates noisy examples in preprocessing of the training set.
The result of noise elimination in preprocessing is a reduced training set
which is used as input to a machine± learning algorithm. The separation of
noise detection and hypothesis formation has the advantage that noisy
examples do not in�uence hypothesis construction (Gamberger et al., 1996).
The explicit detection of potentially noisy examples allows us to show the
examples to the expert, who can distinguish outliers from errors. A general
hypothesis can then be built from error± free data (therefore better capturing
the regularities of the domain), and outliers can be added to the hypothesis
as exceptions to the general rule. Sometimes the separated set of potentially
noisy examples itself can be interesting for inspection by domain experts and
users of machine± learning algorithms.

The elimination of noisy examples has been proposed also by other
authors. Noise and outlier detection and elimination have been extensively
studied in statistics and in the research on nearest neighbor classi�ers. Srini±
vasan et al. (1992) studied the problem of distinguishing exceptions from
noise in inductive logic programming. Noise detection was addressed also in
decision tree learning. An early decision tree learning algorithm assistant
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Noise Detection Experiments 207

(Cestnik et al., 1987) enabled learning from ‘‘good instances only, performed
by eliminating from the training set the incorrect’’ examples misclassi�ed by
the incorporated naive Bayesian classi�er. More recently, removal of outliers
from data was also studied by John (1995). In the recent work of Brodley
and Friedl (1996) the usefulness of the elimination of noisy examples in pre±

processing has been undoubtly demonstrated. In their approach, one or
more learning algorithms are used to create classi�ers that serve as noise
�lters for training data, performing n± fold cross± validation on training exam±

ples. A training example is detected as noisy if it is misclassi�ed by one or
more classi�ers when tested as a member of a test set.

The approach implemented in this work assumes a similar learning
setting consisting of two steps: preprocessing of the training set that includes
noise �ltering, and a separate hypothesis formation step. In this work,
hypothesis formation is performed using the ILLM algorithm (Gamberger,
1995) and the well± known algorithms C4.5 (Quinlan, 1993), k± NN
(Wettschereck, 1994), and CN2 (Clark & Niblett, 1989 ; Clark & Boswell,
1991. In contrast to the work by Brodley and Friedl, our work proposes a
compression± based approach to noise �ltering : the use of a simple compres±

sion measure enables us to detect potentially noisy examples without
actually constructing a hypothesis from the training set. The proposed
approach to noise �ltering is described in the next section. The section
entitled experimental evaluation on UCI Medical Datasets presents the
experimental setting and the results achieved by applying the proposed
noise± detection method in medical diagnostic problems selected from the
data repository at the University of Irvine. The �nal section evaluates the
performance of the noise detection method on the problem of early diag±

nosis of rheumatic diseases.

NOISE DETECTION AND ELIMINATION

Representing Examples by Literals

We �rst consider a two± class learning problem where training set E con±

sists of positive and negative examples of a concept (E 5 P È N) and exam±

ples e are tuples of truth± values of terms in the hypothesis language. The set
of all terms, called literals, is denoted by L.

Let us represent the training set E as a table where rows correspond to
training examples and columns correspond to literals. An element in the
table has the value true when the example satis�es the condition (literal) in
the column of the table, otherwise its value is false.

If the training set does not have the form of tuples of truth± values, a
transformation to this form is performed in preprocessing of the training set.
The transformation procedure is based on the analysis of values of training
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208 D. Gamberger et al.

examples. For each attribute let be the diŒerent valuesAi , vix (x 5 1. . .kip) kip
of the attribute that appear in the positive examples and let wiy (y 5 1. . .kin)
be the diŒerent values appearing in the negative examples. The trans±kin
formation results in a set of literals L :

discrete attributes literals of the form and ared For Ai , Ai 5 vix Ai Þ wiy
generated.

continuous attributes literals of the form ared For Ai , Ai # (vix 1 wiy)/2
created for all neighboring value pairs with the property(vix , wiy) vix ,

and literals for all neighboring pairs withwiy , Ai . (vix 1 wiy)/2 (wiy , vix)
the property The motivation is similar to one suggested inwiy , vix .
(Fayyad & Irani, 1992).

integer± valued attributes literals are generated as if were bothd For Ai , Ai
discrete and continuous, resulting in literals of four diŒerent forms : Ai #

and(vix 1 wiy)/2, Ai . (vix 1 wiy)/2, Ai 5 vix , Ai Þ wiy .

The above procedure applies to propositional learning problems. On the
other hand, when learning logical de�nitions of relations, a diŒerent pro±

cedure for generating literals is applied ; see (Lavrac) & Dz) eroski, 1994 ;
Lavrac) et al., 1995) presenting the LINUS literal generation procedure
applicable to a class of relational learning problems.

p/n Pairs of Examples

For noise detection and elimination, we need to investigate the proper±

ties of literals that hold on individual pairs of training examples, each pair
consisting of a positive and negative example.

De�nition 1. A p/n pair denoted by is a pair of two examples(ei , ej) ei
and such that andej ei Î P ej Î N.

De�nition 2. A literal l Î L covers a p/n pair if the literal has value(ei , ej)
true for and value false forei ej .1

The notion of p/n pairs can be used to prove important properties of
literals for building complete and consistent concept descriptions
(Gamberger & Lavrac) , 1996 ; Gamberger & Lavrac) , 1997).

Theorem 1. Assume a training set E and a set of literals L such that a
complete and consistent hypothesis H can be found. Let L’ k L. A complete
and consistent concept description H can be found using only literals from
the set L’ if and only if for each possible p/n pair from the training set E there
exists at least one literal l Î L’ that covers the p/n pair.

Proof. Proof of necessity : Suppose that the negation of the conclusion
holds, i.e., that a p/n pair exists that is not covered by any literal l Î L’. Then
no rule built of literals from L’ will be able to distinguish between these two
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Noise Detection Experiments 209

examples. Consequently, a description which is both complete and consis±

tent cannot be found.
Proof of sufficiency : Take a positive example Select from L’ the subset ofpi .
all literals that cover A constructive proof of sufficiency can now beLi pi .
presented, based on k runs of a covering algorithm, where k is the cardi±
nality of the set of positive examples, k 5 | P | . In the ith run, the algorithm
learns a conjunctive description for allhi , hi 5 li̧ 1 ` . . . ` li̧ m li̧ 1, . . . li̧ m Î

that are true for Each will thus be true for covers and falseLi pi . hi pi (hi pi),
for all n Î N. After having formed all the k descriptions a resulting com±hi ,
plete and consistent hypothesis can be constructed : H 5 h1 ~ . . . ~ hk .

This theorem plays a central role in our noise elimination approach.
Namely, if the set L is sufficient for constructing a complete and consistent
hypothesis H from E, several such hypotheses may be found. Among these,
one may prefer the simplest according to some complexity measure. Given
the sets E and L, the minimal complexity of a hypothesis that uses literals
from L and is complete and consistent w.r.t. E, denoted by g(E, L) represents
the so± called CLCH value (complexity of the least complex hypothesis,
correct for all the examples in E). Because the set of literals L is assumed to
be �xed in this presentation, g(E) will be used in the rest of this paper as the
function used for computing the CLCH value. One possible measure of com±

plexity of a hypothesis H is the number of diŒerent literals that appear in it.
This measure is very interesting because, as Theorem 1 suggests, there is a
possibility to compute g(E) without actually constructing a hypothesis H ; in
this case, the corresponding g(E) value can be de�ned as the minimal
number of literals | L’ | that are necessary to build a hypothesis that is correct
for all the examples in E: g(E) 5 | L’ | . This fact enables that the g(E) value
can be computed by any minimal± covering algorithm over the set of
example pairs. In this work, the ILLM heuristic minimal covering algorithm
is used (Gamberger, 1995).2 The advantages of this approach are: g(E) com±

putation does not require the actual construction of a hypothesis and the
g(E) value can be determined relatively fast. The algorithm is presented in
Figure 1.

The algorithm starts with the empty set of selected literals L’ (step 1) and
the set U’ of yet uncovered p/n pairs equal to all possible pairs of one posi±
tive and one negative example from the training set (step 3), for which in
(step 2) weights have been computed. The weight of a pair is high ifv(ei , ej)
the pair is covered by a small number of distinct literals from L. The
meaning of this measure is that for a pair with a high weight, it will be more
difficult to �nd an appropriate literal that will cover this p/n pair than for a
p/n pair with a small weight.

Each iteration of the main algorithm loop (steps 4 11) adds one literal to
the minimal set L’ (step 9). At the same time, all p/n pairs covered by the
selected literal are eliminated from U ’ (step 10). The algorithm terminates
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210 D. Gamberger et al.

FIGURE 1. Heuristic minimal covering algorithm.

when U’ remains empty. In each iteration we try to select the literal that
covers a maximal number of ‘‘heavy’’ p/n pairs (pairs with high weight). This
is achieved so that a p/n pair is detected which is covered by the least(ea , eb)
number of literals (step 5). At least one of the literals from the set withLab
literals that cover this pair (step 6), must be included into the minimal set L’.
To determine this literal, for each of them weight w(l) is computed (step 7)
and the literal with the maximal weight is selected (step 8). The weight of a
literal is the sum of the weights of p/n pairs that are covered by the literal.

Noise Elimination Algorithm for Two-Class Problems

The approach to noise detection has its theoretical foundation in the
saturation property of training data (Gamberger & Lavrac) , 1997). It has
been shown that if E is noiseless and saturated (containing enough training
examples to �nd a correct target hypothesis), then whereg(E) , g(En), En 5

and is a noisy example for which the target theory is not correct.E È {en} en
The property means that noisy examples can be detected asg(E) , g(En)
those that enable CLCH value reduction. The approach in an iterative form
is applicable also when includes more than one noisy example.En

The greatest practical problem in this approach is the computation of
the CLCH value g(E) for a training set E ; this problem is solved by applying
Theorem 1 and the presented heuristic minimal covering algorithm (Figure
1). The algorithm shown in Figure 2 presents the complete procedure for
noise detection and elimination called the saturation �lter since it is theoreti±
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Noise Detection Experiments 211

FIGURE 2. Saturation �lter.

cally based on the saturation property of the training set (Gamberger &
Lavrac) , 1997). This algorithm, in its step (6), makes use of the heuristic
minimal± covering algorithm.

Algorithm 2 begins with the reduced training set E’ equal the input
training set E (step 1) and an empty set of detected noisy examples A (step
2). The algorithm supposes that the set of all appropriate literals L for the
domain is de�ned. U represents a set of all possible example pairs, where the
�rst example in the pair is from the set of all positive training examples P’ in
the reduced set E’, and the second example is from the set N’ of all negative
examples in the reduced training set E’. The algorithm detects one noisy
example per iteration. The base for noise detection are weights w(e) which
are computed for each example e from E’. Initially all w(e) values are initial±
ized to 0 (step 4). At the end, the example with maximum weight w(e) is
selected (step 17). If the maximum w(e) value is greater than the parameter e h
prede�ned value, then the corresponding training example is included into
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212 D. Gamberger et al.

the set A (step 19) and eliminated from the reduced training set E’ (step 20).
The new iteration of noise detection begins with this reduced training set
(steps 3 22). The algorithm terminates when in the last iteration no example
has w(e) greater than Noisy examples in A and the noiseless E’ are thee h .
output of the algorithm.

Computations in each iteration begin with the search for the minimal set
of literals L’ that cover all example pairs in U (calling Algorithm 1 in step 6).
A pair of examples is covered by a literal l if the literal is evaluated true for
the positive example and evaluated false for the negative example in the pair.
This step represents the computation of the g(E)’ value. Next, a heuristic
approach is used to compute weights w(e) that measure the possibility that
the elimination of an example e would enable g(E’) reduction. Weights w(e)
are computed so that for every literal l from L’, minimal sets of positive (P*)
and negative examples (N*) are determined, such that if P* or N* are elimi±
nated from E’ then l becomes unnecessary in L’. This is done in a loop (steps
9 12) in which every example pair is tested if it is covered by a single literal
l. If such a pair is detected (step 10), then its positive example is included
into the set P* and its negative example into the set N* (step 11). Literal
elimination from L’ presents the reduction of the g(E’) value. If a literal can
be made unnecessary by the elimination of a very small subset of training
examples, then this indicates that these examples might be noisy. In steps 14
and 15, the w(e) weights are incremented only for the examples which are the
members of the P* and N* sets. The weights are incremented by the inverse
of the total number of examples in these sets. Weights are summed over all
literals in L’. Step 13 is necessary because of the imperfectness of the heuristic
minimal cover algorithm. Namely, if some l Î L’ exists for which there is no
example pair that is covered only by this literal (i.e., for which either P* 5 Ø
or this means that L’ is actually not the minimal set because L’c{ l}N* 5 Ø),
also covers all example pairs in U. In such case L’ is substituted by L’c{ l} .

The presented saturation �lter uses the parameter that determinese h
noise sensitivity of the algorithm. The parameter can be adjusted by the user
in order to tune the algorithm to the domain characteristics. Reasonable
values are between 0.25 and 2. For instance, the value 1.0 guarantees the
elimination of every such example by whose elimination the set L’ will be
reduced for at least one literal. Lower values mean greater sensitivity of thee h
algorithm (i.e., elimination of more examples): lower values should bee h
used when the domain noise is not completely random, and when dealing
with large training sets (since statistical properties of noise distribution in
large training sets can have similar eŒects). In ILLM (Gamberger, 1995) the
default values of are between 0.5 and 1.5, depending on the number ofe h
training examples in the smaller of the two subsets of E : the set of positive
examples P or the set of negative examples N. Default values for the satura±
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Noise Detection Experiments 213

tion �lter’s noise sensitivity parameter are: 1.5 for training sets with 2 50e h
examples, 1.0 for 51 100 examples, 0.75 for 101 200 examples, and 0.5 for
more than 200 examples.

An alternative to using the described heuristic algorithm for noise �lter±

ing is the use of an exhaustive noise �ltering algorithm (Gamberger &
Lavrac) , 1996). The exhaustive noise �ltering algorithm presented in
(Gamberger & Lavrac) , 1997) would require the generation of a large number
of subsets of E’ such that from 1 or up to 3 training examples are elimi±Ex
nated. For each of the subsets the value of g(E’x) is computed and whenEx ,
the condition is ful�lled, then the diŒerence representsg(Ex) , g(E’) E’c(Ex)
the potentially noisy example(s). This approach is impractical because of the
large number of required computations.g(Ex)

Noise Elimination Algorithm for Multiclass Problems

The saturation �lter works for two± class learning problems, where posi±
tive and negative examples of a single concept are described by literals
(binary features). This section describes the multiclass saturation �lter, per±

forming noise elimination for disjoint multiclass problems.
Given an example set E of a multiclass learning problem, the elimination

of noisy examples is performed as follows.

1. For each of the M classes create a two± class learning problem: exam±cj ,
ples that belong to class become the positive examples for learning thecj
concept and all other examples become the negative examples of thiscj
concept. Each pair is thus mapped into a new pair(ei , ci) Î E (ci , cij),
where if and otherwise.cij 5 1 ci 5 cj cij 5 0,

2. Transform each pair where is described by attribute values, into(ei , cij), ei
a pair where is a tuple of truth values of literals (see the(f (ei), cij) f (ei)
Section entitled Representing Examples by Literals describing this
transformation). This results in new example sets j 5 1. . .M.Ej ,

3. For each of the M two± class learning problems, a set of noisy examples
is detected by applying the saturation �lter. LetAj k Ej Aj’ 5 {ei | f(ei) Î

A j} .
4. Finally, the noisy examples of each are eliminated from the originalAj’ Ej

multiclass training set E. This results in a pruned training set

E’ 5 E c p
j/ 1 ´́ ´ M

Aj’

A learning algorithm that assumes a noiseless training set can be now
applied to the reduced training set E’.
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214 D. Gamberger et al.

EXPERIMENTAL EVALUATION ON UCI MEDICAL
DATASETS

Experimental Setting

The goal of our experiments is to show the utility of noise elimination in
learning from noisy datasets. The experiments were designed with the goal
to verify whether the application of the multiclass saturation �lter decreases
the amount of random errors (misclassi�ed training examples) in the
dataset, and whether noise elimination improves the accuracy of induced
hypotheses.

The experiments were performed using three machine± learning algo±

rithms : inductive learning by logic minimization (ILLM) system
(Gamberger, 1995), the C4.5 decision tree learning algorithm (Quinlan, 1993)
and the Wettschereck’s k± NN algorithm (Wettschereck, 1994). These algo±

rithms can be used with and without their noise handling mechanisms.
Inductive larning by logic minimization performs noise handling by using
the saturation �lter which is integrated into ILLM. In C4.5, noise handling
is performed by pruning ; no pruning means no noise handling. Noise hand±

ling in k± NN is achieved by the appropriate choice of the neighborhood of k
nearest neighbors ; 1± NN can be viewed as a variant of k± NN unsuited for
dealing with noisy data.

Eight medical domains were chosen from the UCI repository (data
repository at the University of Irwine) (Murphy & Aha, 1994). The reason
for this choice is our interest in medicine and the fact that medical datasets
represent real± world data usually containing substantial amounts of noise.

In each of the eight domains the evaluation was done using 10± fold strat±

i�ed cross validation, as done by (Quinlan, 1996): the training instances were
partitioned into 10 equal± sized blocks with similar class distributions. Each
block in turn was then used as the test set for the classi�er generated from
the remaining nine blocks, and the average of the 10 results was reported.

When comparing the results of learning from non�ltered and �ltered
data, the signi�cance of accuracy diŒerence was measured by requiring
p , 0.1 using the two± tailed t± test for dependent samples.

Default values for the saturation �lter’s noise sensitivity parameter e h
were: 1.5 for training sets with 2 50 examples, 1.0 for 51 100 examples, 0.75
for 101 200 examples, and 0.5 for more than 200 examples.

C4.5 was run with its default parameters when producing pruned trees
(Quinlan, 1993) and with the parameter [ 2 m 1 ] when producing unpruned
trees. The k± NN algorithm was used in two ways : with and without feature±

weights (Wettschereck, 1994). The k value used in the k± NN algorithm was
automatically selected by the algorithm itself, using a leave± one± out strategy
on the training set.
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Noise Detection Experiments 215

Results of the Experiments

ILLM Results
We �rst used the multiclass saturation �lter to detect and eliminate noise

from the training sets. The input to the algorithm were the original data sets
(OrigEx) and the output were �ltered data sets (FiltEx). We started with
default values of the noise sensitivity parameter The obtained reducede h .
sets are denoted by FiltExR100. Next, the same procedure was repeated by
setting to 75% of its default values. This change enabled the elimination ofe h
a larger amount of examples from the original training sets. The obtained
reduced training sets are denoted by FiltExR75. In the same way, reduced
training sets FiltExR50 and FiltExR25 for 50% and 25% of the default e h
parameter values have been constructed.

The ILLM system without noise �ltering was used to construct rules
that are correct for all noncontradictory training examples in diŒerent train±

ing sets. Experiments were repeated for all OrigEx and diŒerent FiltEx train±

ing sets. The average prediction results of the obtained rules are summarized
in Table 1.

The analysis of results in Table 1 shows that noise elimination, in
general, improves the average prediction accuracy. This can be noticed espe±

cially from the last row with mean values. Mean prediction accuracy is
higher for all training sets with diŒerent levels of noise elimination than for
the original complete training sets. A rather great diŒerence can be noticed
by comparing mean results for R100 and R75 training sets on the one side,
and R50 and R25 training sets on the other side. The possible conclusion is
that, in general, medical domains include much noise and that the elimi±
nation of a larger number of potentially noisy examples is preferred.

The most important result is that in all eight domains noise elimination
enabled prediction accuracy improvement, for seven of them the improve±

ment is signi�cant (p , 0.1 using two± tailed t± test for dependent samples),

TABLE 1 ILLM Results

FiltEx FiltEx FiltEx FiltEx
OrigEx R100 R75 R50 R25

Breast 71.0 70.9 71.0 74.1 74.8
Cleveland 73.0 77.3 79.3 82.9 84.9
Echocardiogram 54.2 61.9 63.4 68.7 67.9
Hepatitis 71.5 71.6 71.6 70.5 71.1
Hungarian 75.6 75.6 74.9 76.3 79.4
Lymphography4 78.2 79.6 77.0 80.4 78.4
Thyroid 95.6 96.4 96.8 96.7 96.9
PrimaryTumor15 33.0 35.5 33.0 32.4 31.2

Mean 69.0 71.1 70.9 72.8 73.1
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but for diŒerent domains the optimum is achieved by diŒerent parametere h
values. This means that the suggested approach to noise elimination is
useful, but the results show that noise �ltering should be used with caution
since after the initial positive eŒects of noise elimination further elimination
of training examples may result in decreased prediction accuracy. For
example, in the Cleveland domain we have detected the increase in predic±

tion accuracy by further elimination of training examples from the training
set (the optimum is achieved by using the R25 sets or by using some even
more �ltered training set). In contrast, for the PrimaryTumor15 domain we
have a signi�cant increase relative to the original data set when R100 train±

ing sets were tested, but for R75, R50, and R25 we have a constant decrease
in prediction accuracy ; the prediction accuracy for the R25 sets is signi� ±

cantly worse than the accuracy measured for the original data. The Hun±

garian and Thyroid domains are similar to the Cleveland domain with the
optimum for R25 sets, while for the Echocardiogram and Lymphography4
domains the optimum is achieved for R50 sets.

C4.5 results
In order to better verify the obtained gain in prediction accuracy due to

noise elimination, a series of tests on both original and pruned training sets
were performed. With the intention to simulate a real± life situation, we did
not select the reduced sets so that diŒerent, optimal parameter values aree h
selected for diŒerent domains. In the experiment with C4.5 algorithm
(Quinlan, 1993), we used FiltExR25 reduced sets obtained by 25% of default

parameter values for all eight domains. Table 2 presents average cross±e h
validation prediction accuracies achieved. OrigEx denotes the original data±

sets while UnP denotes unpruned trees, and P denotes trees pruned by the
C4.5 noise± handling mechanism.

The analysis of results in Table 2 shows that noise elimination improves
the average accuracy (FiltEx UnP : 72.8%), when compared to using C4.5 on
the original dataset (OrigEx UnP : 70.3%). The comparison of the per±

TABLE 2 C4.5 Results

OrigEx FiltExR25 OrigEx FiltExR25
UnP UnP P P

Breast 68.9 74.1 75.5 75.1
Cleveland 77.0 79.0 84.9 84.9
Echocardiogram 57.9 59.5 70.2 70.2
Hepatitis 74.2 78.8 73.0 73.6
Hungarian 76.6 78.0 80.0 79.7
Lymphography4 71.6 74.8 79.0 78.3
Thyroid 96.0 96.5 96.3 96.8
PrimaryTumor15 40.3 41.8 36.4 38.2

Mean 70.3 72.8 74.4 74.6
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Noise Detection Experiments 217

formance of noise elimination on individual domains reveals that in all eight
domains noise elimination helps the classi�er to achieve a better accuracy,
and that the accuracy increase is signi�cant (p , 0.1 using two± tailed t ± test
for dependent samples) in seven domains. This result supports our hypothe±

sis that noise elimination by the multiclass saturation �lter improves the
accuracy of hypotheses.

When compared to the C4.5 pruning mechanism for noise± handling,
average results achieved by pruning of C4.5 trees (OrigEx P : 74.4%) are
signi�cantly better than the results achieved by noise elimination in pre±

processing for C4.5 used without pruning (FiltEx UnP : 72.8%). Using the
multiclass saturation �lter in conjunction with the C4.5 pruning mechanism
results in a further slight accuracy improvement (OrigEx P : 74.4%, FiltEx
P : 74.6%). It must be also noted that the C4.5 pruning mechanism resulted
in signi�cant prediction accuracy increase for six out of eight domains, but
that the results for two domains are worse than the results obtained without
pruning.

k-NN Results
The following tests were performed by the k± NN algorithm

(Wettschereck, 1994), which selects the optimal k based on the analysis of
the dataset. The intention was to show that noise elimination in pre±

processing can be useful also for completely diŒerent machine± learning para±

digms. Using k± NN versus 1± NN can be viewed as noise± handling, due to
the in�uence on the bias/variance trade± oŒ(Wettschereck, 1994) and person±

al communication). A larger k indicates a stronger bias ; hence noise will
have less eŒect. A decrease of the optimal value of k, selected by the k± NN
algorithm, indicates a lower noise level in a dataset, which is supported by
the theory about the bias/variance trade± oŒ. Results of the experiment by
the k± NN algorithm are presented in Table 3. The results were achieved with
1± NN and k± NN without feature weights. When applying feature weights,
similar results are achieved. The diŒerence to the previous experiment with

TABLE 3 k± NN Results

OrigEx FiltExR100 OrigEx FiltExR100
1± NN 1± NN k± NN k± NN

Breast 64.4 65.0 72.7 (25.0) 71.0 (12.6)
Cleveland 75.9 76.6 76.6 (37.4) 77.9 (13.0)
Echocardiogram 58.1 62.7 63.5 (20.8) 68.8 (11.0)
Hepatitis 78.7 79.3 79.4 (13.4) 80.7 (12.6)
Hungarian 74.0 74.0 78.7 (21.0) 80.1 (19.4)
Lymphography4 81.0 82.3 82.3 (4.2) 81.0 (4.6)
Thyroid 95.8 96.1 96.4 (8.6) 96.1 (5.4)
PrimaryTumor 15 40.6 40.9 43.6 (31.0) 42.4 (20.6)

Mean 71.1 72.1 74.2 (20.2) 74.8 (12.4)
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C4.5 is that for all domains FiltExR100 reduced sets with default param±e h
eter values are used and that besides the prediction accuracy, the mean
values of the used k values are reported in k± NN columns.

The analysis of results shows that noise elimination slightly improves the
average accuracy (FiltEx 1± NN : 72.1%), when compared to using 1± NN on
the original dataset (OrigEx 1± NN ; 71.1%). The improvement occurs in
seven out of eight datasets. The results are moderately in favor of our
hypothesis that noise elimination by the multiclass saturation �lter improves
the accuracy of induced hypotheses.

k± NN with the automatic detection of the optimal value of k (which
performs noise handling by extending the neighborhood to k nearest
neighbors) performs signi�cantly better (OrigEx k± NN : 74.2%) than 1± NN
on the pruned datasets (FiltEx 1± NN : 72.1%). A further slight improvement
of k± NN may be achieved by preprocessing the dataset using the multiclass
saturation �lter (FiltEx k± NN : 74.8%).

More importantly, the average optimal value of k, when k± NN is applied
to the datasets after noise reduction, signi�cantly decrease when compared
to the situation when k± NN is applied to the original datasets. The decrease
is present in seven domains, in �ve of them it is signi�cant. It must be noted
that the eŒect is detected on the least reduced training sets (FiltExR100) and
it can be expected to be even more favorable on other, more reduced train±

ing sets.

EXPERIMENTAL EVALUATION ON THE PROBLEM OF
EARLY DIAGNOSIS OF RHEUMATIC DISEASES

Problem Description

Experiments in this section are aimed at evaluating the performance of
the multiclass saturation �lter on the problem of early diagnosis of rheu±

matic diseases. This problem was addressed in our earlier experiments with
rule± induction algorithms (Dz) eroski & Lavrac) , 1996 ; Lavrac) et al., 1993 ;
Lavrac) & Dz) eroski, 1994, Lavrac) et al., 1997). This is an eight± class diagnos±

tic problem. Table 4 gives the names of the diagnostic classes and the
numbers of patients belonging to each class.

To facilitate the comparison with earlier experiments in this domain, the
experiments were performed on anamnestic data, without taking into
account data about patients’ clinical manifestations, laboratory and radio±

logical �ndings. There are 16 anamnestic attributes : sex, age, family anam±

nesis, duration of present symptoms (in weeks), duration of rheumatic
diseases (in weeks), joint pain (arthrotic, arthritic), number of painful joints,
number of swollen joints, spinal pain (spondylotic spondylitic), other pain
(headache, pain in muscles, thorax, abdomen, heels), duration of morning
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TABLE 4 Class

Name [ of patients

A1 degenerative spine diseases 158
A2 degenerative joint diseases 128
B1 in�ammatory spine diseases 16
B234 other in�ammatory diseases 29
C extraarticular rheumatism 21
D crystal± induced synovitis 24
E nonspeci�c rheumatic manifestations 32
F nonrheumatic diseases 54

stiŒness (in hours), skin manifestations, mucosal manifestations, eye manifes±

tations, other manifestations, and therapy. Some of these attributes are con±

tinuous (e.g., age, duration of morning, stiŒness) and some are discrete (e.g.,
joint pain, which can be arthrotic, arthritic, or not present at all).

CN2 and the Relative Information Score Measure
In these experiments the CN2 rule± learning algorithm (Clark & Niblett,

1989 ; Clark & Boswell, 1991) was used. The most recent version of CN2
(Dz) eroski et al., 1993) can measure its classi�cation performance in terms of
the classi�cation accuracy as well as in terms of the relative information score
(Kononenko Bratko, 1991). The relative information score is a performance
measure which is not biased by the prior class distribution. It accounts for
the possibility to achieve high accuracy easily in domains with a very likely
majority class by taking into account the prior probability distribution of
the training examples.

Let the correct class of example be its prior probabilityek ck , pk 5 p(ck),
and the probability returned by the classi�er The informationpk’ 5 p’(ck).
score of this answer is

I(ek) 5 5 2 log pk 1 log pk’

log(1 2 pk) 2 log(1 2 pk’)
pk’ $ pk

pk’ , pk

As indicates the amount of information about the correct classi�cationI(ek)
of gained by the classi�er’s answer, it is positive if negative if theek pk’ . pk ,
answer is misleading and zero if(pk’ , pk) pk’ 5 pk .

The relative information score of the answers of a classi�er on a testingIr
set consisting of examples . . . , each belonging to one of the classese1, e2 , et

. . . , can be calculated as the ratio of the average information scorec1, c2 , cN
of the answers and the entropy of the prior distribution of classes:

Ir 5

1
t

3 ^ k/ 1
t I(ek)

2 ^ i/ 1
N pi log pi
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Experimental Setting

Experiments were performed on the same training and testing sets as
used in our previous experiments (Lavrac) et al., 1993 ; Lavrac) & Dz) eroski,
1994) using 10 diŒerent random partitions of the data into 70% training and
30% testing examples. In this way, 10 training sets and 10 testing setsEi Ti ,
i 5 1. . .10 were generated. In these experiments, CN2 (Dz) eroski et al., 1993)
was applied with and without its signi�cance test noise± handling mechanism.
When using the signi�cance test in CN2, a signi�cance level of 99% was
applied. For an eight± class problem, this corresponds to a threshold 18.5 for
the value of the likelihood ratio statistic. The other CN2 parameters were set
to their default values (Clark & Boswell, 1991). When using the multiclass
saturation �lter for noise elimination, the noise sensitivity parameter hade h
its default values 1.5 for training sets with 2 50 examples (training sets for
diagnosis B1, B234, C, D, E), 1.0 for 51 100 examples (F), 0.75 for 101 200
examples (A1, A2), and 0.5 for more than 200 examples (there was no such
training set).

CN2 Results

Previous experiments (Lavrac) et al., 1993 ; Lavrac) & Dz) eroski, 1994)
show that the CN2 noise± handling mechanism improves the classi�cation
accuracy, but decreases the relative information score. These results are
reproduced in Table 5, columns OrigEx CN2± ST and OrigEx CN2± NoST
(ST denotes the use of signi�cance test in CN2, and NoST means that no
signi�cance test was used).

In our experiments, we tested the performance of the noise elimination

TABLE 5 CN2 Results

Accuracy Relative information score

OrigEx OrigEx FiltEx OrigEx OrigEx FiltEx
Partition CN2± ST CN2± NoST CN2± NoST CN2± ST CN2± NoST CN2± NoST

1 47.5 38.1 45.3 17.0 21.0 26.0
2 45.3 44.6 44.6 20.0 23.0 28.0
3 51.1 45.3 47.5 17.0 19.0 24.0
4 44.6 43.9 38.8 17.0 24.0 20.0
5 46.0 40.3 41.7 21.0 22.0 25.0
6 49.6 48.2 50.4 15.0 26.0 24.0
7 44.6 42.4 46.8 21.0 27.0 31.0
8 41.0 38.8 43.2 21.0 19.0 25.0
9 43.9 45.3 48.2 16.0 23.0 29.0

10 39.6 41.7 43.2 23.0 23.0 25.0

Mean 45.3 42.9 45.0 18.8 22.7 25.7
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algorithm by comparing the results achieved by CN2 before and after noise
elimination. These results are given in columns CN2± NoST of Table 5.

In order to observe the eŒect of noise elimination, the results in columns
OrigEx CN2± NoST and FiltEx CN2± NoST of Table 5 need to be compared.
On the other hand, in order to compare the noise elimination algorithm
with the CN2 noise± handling mechanism using the signi�cance test, compare
the columns OrigEx CN2± ST, and FiltEx CN2± NoST in Table 5. This is
actually the most interesting comparison since, in terms of classi�cation
accuracy, CN2 with signi�cance test CN2± ST) is known to perform well on
noisy data.

The elimination of noisy examples increases the classi�cation accuracy
from 42.9% to 45.0%. This increase is statistically signi�cant at the 96%
level according to the one± tailed paired t± test. This result is in favor of our
expectation that the elimination of noisy examples is useful for concept
learning. The eŒect of noise± handling by the noise elimination algorithm
(accuracy 45.0%) is comparable to the eŒect of the signi�cance test (accuracy
45.3% achieved by CN2± ST); the diŒerence in performance is not signi�cant.

In terms of the relative information score, substantial improvements are
achieved by applying the noise elimination algorithm. The relative informa±

tion score signi�cantly increases (from 22.7% to 25.7%) after the elimination
of noisy examples. Particularly favorable is the comparison between the
noise elimination and the signi�cance test used as the CN2 noise± handling
mechanism: there is an almost 7% diŒerence in favor of noise elimination,
i.e., an increase from 18.8% to 25.7%.

SUMMARY

The reported results indicate the utility of the multiclass saturation �lter±

ing for �nding noisy examples in the dataset. Similar as in Brodley & Friedl
(1996), the approach may introduce an important new paradigm for learn±

ing : noise elimination in preprocessing. The set of examples, detected as
potentially noisy by the saturation �lter, may also include outliers. The pro±

posed paradigm suggests that the potentially noisy examples should be
shown and analyzed by an expert ; examples representing real noise should
be eliminated from the training set, whereas outliers should be, after hypoth±

esis construction, added as exceptions to the generated rule.
The results of experiment show that the prediction accuracy of machine±

learning algorithms increases when combined with our noise detection and
elimination approach. Despite the fact that the noise± handling mechanisms
of C4.5, k± NN, and CN2 outperform the use of the saturation �lter in pre±

processing, the comparative advantage of our approach is the explicit detec±

tion of errors and outliers in the training set. The most interesting results are
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those achieved by CN2 on the problem of early diagnosis of rheumatic dis±

eases, which show the adequacy of the elimination of noisy examples as a
noise± handling mechanism. On the reduced datasets, obtained by applying
the multiclass saturation �lter, the CN2 learning algorithm without its
noise± handling mechanism (no signi�cance test) yielded accuracies compara±

ble to those of CN2 with its noise± handling mechanism (with signi�cance
test) on the original datasets. More importantly, noise elimination resulted
in signi�cantly better relative information scores, thus improving the overall
performance. These relative information scores are the best scores achieved
with CN2 in this domain (Lavrac) et al., 1993 ; Lavrac) & Dz) eroski, 1994).

NOTES

1. In the standard machine± learning terminology we may reformulate the de�nition of coverage of p/n
pairs as follows : literal l covers a pair if l covers the positive example and does not cover the(ei , ej) ei
negative example ej .

2. Alternatively, an exhaustive minimal± covering algorithm could be used (Gamberger, 1995 ; Gamber±

ger & Lovrac) , 1996) but its time complexity prevents its use in real± life applications.
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