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Extensive amounts of knowledge and data stored in medi-
cal databases request the development of specialized tools
for storing and accessing of data, data analysis, and effec-
tive use of stored knowledge and data. This paper focuses on
methods and tools for intelligent data analysis, aimed at nar-
rowing the increasing gap between data gathering and data
comprehension. The paper sketches the history of research
that led to the development of current intelligent data analy-
sis techniques, discusses the need for intelligent data analysis
in medicine, and proposes a classification of intelligent data
analysis methods. The main scope of the paper are machine
learning and temporal abstraction methods and their applica-
tion in medical diagnosis. A selection of methods and diag-
nostic domains is presented, and the performance or viability
of approaches discussed. The paper concludes with the eval-
uation of selected intelligent data analysis methods and their
applicability in medical diagnosis.

Keywords: intelligent data analysis, machine learning, tem-
poral abstraction, medical applications, medical diagnosis

1. Introduction

“Now that we have gathered so much data, what do
we do with it?” This is the opening statement of the ed-
itorial by Usama Fayyad and Ramasamy Uthurusamy
in the Communications of the ACM, Special issue on

Data Mining [17]. Recently, many statements of this
kind appeared in journals, conference proceedings, and
other materials that deal with data analysis, knowledge
discovery, and machine learning. They all express a
concern about how to “make sense” from the large vol-
umes of data being generated and stored in almost all
fields of human activity.

Especially in the last few years, the digital revolution
provided relatively inexpensive and available means to
collect and store the data. For example in medicine,
still in the mid-nineties one of the fathers of Artificial
Intelligence in Medicine, Edward H. Shortliffe, par-
tially blamed the underdeveloped hospital infrastruc-
ture for the failure to fulfill the initial promise of the
field [81]. Recently, however, the situation is chang-
ing rapidly: modern hospitals are well equipped with
monitoring and other data collection devices, and data
is gathered and shared in inter- and intra-hospital infor-
mation systems. In fact, medical informatics has be-
come a must and an integral part of every successful
medical institution [83].

The increase in data volume causes greater difficul-
ties in extracting useful information for decision sup-
port. The traditional manual data analysis has become
insufficient, and methods for efficient computer-based
analysis indispensable. From this need, a new inter-
disciplinary field of Knowledge discovery in databases
(KDD) was born [21]. KDD encompasses statistical,
pattern recognition, machine learning, and visualiza-
tion tools to support the analysis of data and discovery
of principles that are encoded within the data.

KDD is frequently defined as a process [18] consist-
ing of the following steps: understanding the domain,
forming the dataset and cleaning the data, extracting of
regularities hidden in the data thus formulating knowl-
edge in the form of patterns, rules, etc. (this step in the
overall KDD process is usually referred to as data min-
ing (DM)), postprocessing of discovered knowledge,
and exploitation of the results.
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In this paper we use the term intelligent data anal-
ysis (IDA) rather than KDD, despite the fact that it is
hard to make the distinction between the two. IDA
and KDD have in common the topic of investigation,
which is interactive and iterative process of data anal-
ysis, and they share many common methods. A pos-
sible distinguishing feature is that the methodologies
and techniques used in IDA are mostly (but not exclu-
sively) knowledge-based (and therefore “intelligent”
in the sense used in Artificial Intelligence): they ei-
ther use the knowledge about the problem domain, of
the underlying principles or the knowledge about the
data analysis process itself. Another aspect involves
the size of data: KDD is typically concerned with
the extraction of knowledge from very large datasets,
whereas in IDA this is not necessarily the case. This
also affects the type of data mining tools used: in KDD
the data mining tools are executed mostly in batch
mode (despite the fact that the entire KDD process is
interactive), whereas in IDA the tools can either be
batch or applied as interactive assistants.

Specific goals of applying IDA in medicine are:

– the extraction (discovery) of medical knowledge
for diagnostic, screening, prognostic, monitoring,
therapy support or overall patient management
tasks (i.e., data mining), and

– the intelligent interpretation of patient data in a
context-sensitive manner and the presentation of
such interpretations in a visual or symbolic form
(i.e., data abstraction); the temporal dimension in
the representation and intelligent interpretation of
patient data is of primary importance.

As any other research in medicine is aimed at di-
rectly or indirectly enhancing the provision of health
care, IDA research in medicine is no exception. As
such, the benchmark tests for these methods and tech-
niques can only be real world problems. Viable IDA
proposals for medicine must be accompanied by de-
tailed requirements that delineate the spectrum of real
applications addressed by such proposals; in-depth
evaluation of resulting systems thus constitutes a criti-
cal aspect.

Another consideration is the role of IDA systems in
a clinical setting. Their role is clearly that of an in-
telligent assistant that tries to bridge the gap between
data gathering and data comprehension, in order to en-
able the physician to perform his task more efficiently
and effectively. If the physician has at his disposal
the right information at the right time, doubtless he
will be in a better position to reach correct decisions

or instigate correct actions within the given time con-
straints. The information revolution made it possible
to collect and store large volumes of data from diverse
sources on electronic media. These data can be on
a single case (e.g., one patient) or on multiple cases.
Raw data as such are of little value since their sheer
volume and/or the very specific level at which they are
expressed make its utilization (operationalization) in
the context of problem solving impossible. However
such data can be converted to a mine of information
wealth if the real gems of information are gleaned out
by computationally intelligent means. The useful, op-
erational information/knowledge, which is expressed
at the right level of abstraction, is then readily avail-
able to support the decision making of the physician in
managing a patient.

Important issues that arise from the rapidly emerg-
ing globality of data and information are:

– the provision of standards in terminology, vocabu-
laries and formats to support multi-linguality and
sharing of data,

– standards for the abstraction and visualization of
data,

– standards for interfaces between different sources
of data,

– seamless integration of heterogeneous data; im-
ages and signals are important types of data,

– standards for electronic patient records, and
– reusability of data, knowledge, and tools.

Clinical data constitute an invaluable resource, the
proper utilization of which impinges directly on the
essential aim of health care which is “correct patient
management”. Investing in the development of appro-
priate IDA methods, techniques and tools for the anal-
ysis of clinical data is thoroughly justified and this re-
search ought to form a main thrust of activity by the
relevant research communities.

Numerous intelligent data analysis methods have al-
ready been applied for supporting decision making in
medicine (e.g., see [51]). These methods can be clas-
sified into two main categories: data mining and data
abstraction. The majority of data mining IDA meth-
ods belong to machine learning and the majority of
data abstraction methods perform temporal abstrac-
tion. This is the reason for machine learning and tem-
poral abstraction to be the focus of investigation in this
paper.

The structure of this paper is as follows. In Sec-
tion 2, the paper first sketches the history of research
(Section 2.1) that led to the development of current
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intelligent data analysis techniques. It then discusses
the need for intelligent data analysis in medicine (Sec-
tion 2.2), proposes a classification of intelligent data
analysis methods (Section 2.3), and outlines some re-
lated characteristics of medical diagnosis problems
(Section 2.4). The main scope of the paper are machine
learning and temporal abstraction methods, and their
application in medical diagnosis. A selection of meth-
ods and diagnostic domains is presented, and the per-
formance or viability of such approaches is discussed
in Sections 3 and 4. In Section 6 the paper concludes
with the evaluation of selected intelligent data analysis
methods and their applicability in medical diagnosis.

2. Intelligent data analysis in medicine

2.1. Knowledge versus data: A historical sketch

In late seventies and early eighties, AI in medicine
was mainly concerned with the development of medi-
cal expert systems aimed at supporting diagnostic de-
cision making in specialized medical domains. Short-
liffe’s MYCIN [80], representing pioneering work in
this area, was followed by numerous other efforts lead-
ing to specialized diagnostic and prognostic expert sys-
tems, e.g., HODGKINS [75], PIP [62, 84], CASNET
[88], HEADMED [23], PUFF [46], CENTAUR [1],
VM [16], ONCOCIN [82], ABEL [61], GALEN [85]
MDX [9], and many others. The most general and
elaborate systems were developed for supporting diag-
nosis in internal medicine [64, 58, 57]: INTERNIST-
1 and its follower CADUCEUS, which, in addition
to expert-defined rules as used in INTERNIST-1, in-
cluded also a network of patophysiological states rep-
resenting “deep” causal knowledge about the problem.
The main problems addressed at this early stage of ex-
pert system research concerned knowledge acquisition
[14, 15], knowledge representation, reasoning and ex-
planation [86]. A typical early expert system schema
is shown in Fig. 1.

Rules were proposed from the early days of knowledge-
based systems, and expert systems in particular, as a
prime formalism for expressing knowledge in a sym-
bolic way. Rules have the undisputed advantages of
simplicity, uniformity, transparency, and ease of infer-
ence, that over the years have made them one of the
most widely adopted approaches for representing real
world knowledge. Rules elicited directly from domain
experts are expressed at the right level of abstraction
from the perspective of the expert, and are indeed com-

prehensible to the expert since they are formulations
of his rules of thumb. However, human-defined rules
risk capturing the biases of one expert, and although
each rule individually may appear to form a coherent,
modular chunk of knowledge, the analysis of rules as
an integral whole can reveal inconsistencies, gaps, and
various other deficiencies due to their largely flat or-
ganization (i.e., the lack of a comprehensive, global,
hierarchical organization of the rules).

It soon became clear that knowledge acquisition is
the hardest part of the expert system development task.
This was identified as the so-called “Feigenbaum bot-
tleneck” [19, 20] in the construction of a knowledge
base. The knowledge base is the heart of an expert
system. For the effective use of expert system tech-
nology a knowledge base needs to be consistent and
as complete as possible, throughout its deployment;
to attain these desirable characteristics, both manual
knowledge maintenance should be facilitated and the
system should be able to evolve on the basis of its prob-
lem solving experience. The limitations of the first
generation of expert systems [36, 49] coupled with the
relatively high costs (in human and other terms) in-
volved in acquiring knowledge directly from the ex-
perts, as well as the fact that databases of example
cases started becoming readily available, made the
learning of rules from such data especially appealing
as a more efficient, less biased, and more cost-effective
approach. On the one hand, this led to the develop-
ments in the area of machine learning (as described
below), and on the other hand, to the investigations
of the use of deep causal knowledge that could poten-
tially overcome the difficulties encountered when us-
ing unstructured shallow-level sets of rules [37, 28].
An early approach to combining the use of deep knowl-
edge and machine learning was used in the develop-
ment of KARDIO, a system for ECG diagnosis of car-
diac arrhythmias [5].

In late eighties and early nineties it thus became
apparent that knowledge acquired from experts alone
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Fig. 1. An expert system schema of early ’80s.
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is unsuitable for solving difficult problems and that,
when developing decision support systems, the analy-
sis of data gathered in the daily practice of experts and
stored systematically in databases can play an impor-
tant role for the decision making support. This led to
the development of early machine learning algorithms
[52, 65] aimed at the automatic extraction of rules or
decision trees from data. Early machine learning sys-
tems, aimed at dealing with real-world data which may
be erroneous (noisy) and incomplete, include CART
[6], Quinlan’s extensions to ID3 [66], ASSISTANT [4,
8], AQ [53], and CN2 [12, 11]; C4.5 [68] is an effi-
cient and probably the most popular machine learning
system of the nineties.

Machine learning approaches do not advocate the
bypassing of experts. Far from so. Experts are actively
involved, but in a different and more constructive way
than in the development of early expert systems. The
example cases come from the experts and the result-
ing rules are validated by the experts for comprehen-
sibility and other desired qualities. The learning ap-
proaches ensure that the derived rules are consistent,
hierarchically organized (for example in terms of a de-
cision tree), and, assuming that the collection of case
examples used provides an adequate coverage of the
particular domain, the resulting set of rules will be of
sufficient accuracy and adequate coverage (i.e., with-
out significant gaps of knowledge). Furthermore, the
expert provides important background knowledge for
focusing and guiding the learning of rules. Irrespective
of whether rules are learned or directly acquired from
experts, their format should be simple, intuitive, and
adequately expressive for the purposes of the particular
application.

The nineties are characterized by the increasing gap
between the excessive storage of uninterpreted data
and the understanding of the data, and the need to over-
come this gap by the effective use of data analysis tech-
niques. The main emphasis of current research is thus
on data analysis. This led to the challenging new re-
search areas of knowledge discovery in databases [21],
data mining, and intelligent data analysis, in which ma-
chine learning techniques have a major role when the
goal of data analysis is knowledge extraction. Cur-
rent machine learning research is characterized by a
shift of emphasis towards relational learning (ILP, [59,
50]) and more elaborate statistics applied in learning
and evaluation methodologies. In data analysis, an-
other trend is towards data abstraction and, in partic-
ular, towards temporal data abstraction [30] that can
be viewed as a form of preprocessing for further data

analysis. In the late nineties, data analysis has an in-
creased role also due to the fact that data gathering
is becoming distributed (e.g., telemedicine [2]), and
that the analysis of such data is even more demanding.
Fig. 2 shows a possible schema of a decision support
system of the nineties, where decision support needs
to deal also with large volumes of data, as well as data
gathering and analysis via the Internet and an intranet
(see also the account by [3]).

2.2. The need for IDA in medicine

The gap between data generation and data compre-
hension is widening in all fields of human activity. In
medicine, overcoming this gap is particularly crucial
since medical decision making needs to be supported
by arguments based on basic medical knowledge as
well as knowledge, regularities and trends extracted
from data.

There are two main aspects that define the signifi-
cance of and the need for intelligent data analysis in
medicine:

– The first important aspect concerns the discovery
of new medical knowledge that can be extracted
through data mining of representative collections
of example cases, described by symbolic or nu-
meric descriptors. The available datasets are often
incomplete (missing data) and noisy (erroneous).
The methods for extracting meaningful and under-
standable symbolic knowledge will be referred to
as data mining methods. The quality assessment
of these methods is based both on the performance
(classification and prediction accuracy, misclassi-
fication cost, sensitivity, specificity, etc.), as well
as the understandability and significance of the
discovered knowledge.

– The second aspect concerns the support of spe-
cific knowledge-based problem solving activities
(diagnosis, prognosis, monitoring, etc.) through
the intelligent analysis of individual patients’ raw
data, e.g., a time series of data collected in mon-
itoring. Data are mostly numeric and often quite
noisy and incomplete. The aim is to glean out, in
a dynamic fashion, useful abstractions (e.g., sum-
maries) on the patient’s (past, current, and hy-
pothesized future) situation which can be matched
against the relevant (diagnostic, prognostic, mon-
itoring, etc.) knowledge for the purposes of the
particular problem solving activity. Such data
analysis methods are referred to as data abstrac-
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Fig. 2. A decision support system schema of late ’90s.

tion methods, a term originally coined by Clancey
in his now classical proposal on heuristic classifi-
cation [10], where these methods form an integral
part of the reasoning process. Recently, data ab-
straction methods have been concerned with the
interpretation of temporal data (temporal data ab-
straction), where temporal trends and more com-
plex temporal patterns constitute main types of
such abstractions. Since the primary goal of (tem-
poral) data abstraction methods is on-line decision
support, their quality assessment is performance-
based: for instance, does a method provide ade-
quate support for diagnostic and prognostic rea-
soning, does it predict well a trend or a value to
be expected at the next point in time? In this re-
spect, visualization of data is extremely important
for supporting decision making and even invalu-
able for successfully performing a problem solv-
ing task.

Since the goal of data abstraction is to describe the
data in more abstract terms, it can also be used in the

preprocessing of data for further analysis by data min-
ing techniques and tools.

2.3. A classification of IDA methods

Based on the main aspects of the use of IDA meth-
ods in medicine discussed in Section 2.2, we propose
the following classification of IDA methods:

– Data mining methods are intended to extract
knowledge preferably in a meaningful and under-
standable symbolic form. Most frequently applied
methods in this context are supervised symbolic
learning methods. For example, effective tools
for inductive learning exist that can be used to
generate understandable diagnostic and prognos-
tic rules. Symbolic clustering, discovery of con-
cept hierarchies, qualitative model discovery, and
learning of probabilistic causal networks fit in this
framework as well. Sub-symbolic learning and
case-based reasoning methods can also be classi-
fied in the data mining category. Other frequently
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applied sub-symbolic methods are nearest neigh-
bor, Bayesian classifier, and (non-symbolic) clus-
tering.

– Data abstraction methods are intended to sup-
port specific knowledge-based problem solving
activities (data interpretation, diagnosis, progno-
sis, monitoring, etc.) by gleaning out the useful
abstractions from the raw, mostly numeric data.
Temporal data abstraction methods represent an
important subgroup where the processed data are
temporal. The derivation of abstractions is often
done in a context sensitive and/or distributed man-
ner and it applies to discrete and continuous sup-
plies of data. Useful types of temporal abstrac-
tions are trends, periodic happenings, and other
forms of temporal patterns. Temporal abstractions
can also be discovered by visualization. The ab-
straction can be performed over a single case (e.g.,
a single patient) or over a collection of cases.

The scope of this paper regarding data mining is ma-
chine learning methods, with the emphasis on sym-
bolic concept learning and Bayesian classification. In
data abstraction, the scope of the paper is limited to
temporal abstraction methods.

2.4. IDA for medical diagnosis

A typical diagnostic process is the following. In
an interview the patient’s anamnestic data is obtained
and after the preliminary examination of the patient the
physician records the status data. Depending on the
anamnestic and the status data, the patient takes addi-
tional laboratory examinations. The diagnosis is then
determined by the physician who takes into account
the whole available description of the patient’s state of
health. Depending on the diagnosis the treatment is
prescribed and after the treatment the whole process
may be repeated. In each iteration the diagnosis may
be confirmed, refined, or rejected. The definition of
the final diagnosis depends on the medical problem.
In some problems the first diagnosis is also the final,
in some others the final diagnosis is determined after
the results of the treatment are available, and in some
problems there is no way to obtain a completely reli-
able final diagnosis. For example, in the problem of
the localization of the primary tumor the final diagno-
sis can always be obtained with an operation where the
location of the primary tumor is verified, although this
“examination” is avoided and replaced with other lab-
oratory tests unless it is really necessary to obtain the

verified diagnosis. And in urology, in the problem of
diagnosing the type of incontinence, in practice the fi-
nal diagnosis is never obtained as there is no practical
way to verify it.

Medical diagnosis is known to be subjective and de-
pends not only on the available data but also on the
experience of the physician, his intuition and biases,
and even on the psycho-physiological condition of the
physician. Several studies have shown that the diagno-
sis of a patient can differ significantly if the patient is
examined by different physicians or even by the same
physician at different times (different day of the week
or different hour of the day).

2.4.1. Machine learning
Machine learning methods can be used to automat-

ically derive diagnostic rules from the descriptions of
the patients treated in the past for which the final diag-
noses were verified. Automatically derived diagnostic
knowledge may assist physicians to make the diagnos-
tic process more objective and more reliable.

Typically, automatically generated diagnostic rules
slightly outperform the diagnostic accuracy of physi-
cian specialists when physicians have available exactly
the same information as the machine. Table 1 pro-
vides a comparison of the performance of two ma-
chine learning algorithms, the naive Bayesian classifier
and a decision tree induction algorithm Assistant [8],
with the average performance of four physician spe-
cialists in three different medical diagnostic problems:
the localization of the primary tumor (PRIM), the diag-
nosis of thyroid diseases (THYR), and rheumatology
(RHEU).

Table 1
The comparison of performance of different classifiers in three med-
ical domains.

Classifier PRIM THYR RHEU
naive Bayes 49% 1.60bit 70% 0.79bit 67% 0.52bit
Assistant 44% 1.38bit 73% 0.87bit 61% 0.46bit
physicians 42% 1.22bit 64% 0.59bit 56% 0.26bit

The following are the brief descriptions of the diag-
nostic problems (see also [45]).

– Localization of primary tumor: The medical
treatment of patients with metastases is much
more successful if the location of the primary tu-
mor in the body of the patient is known. The diag-
nostic task is to determine one of 22 possible loca-
tions of the primary tumor on the basis of age, sex,



Nada Lavrač∗ et al. / Intelligent data analysis for medical diagnosis: Using machine learning and temporal abstraction 7

histological type of carcinoma, the degree of dif-
ferentiation and 13 possible locations of discov-
ered metastases. The data set of 339 patients with
known locations of the primary tumor was pro-
vided for our experiments by the Institute of On-
cology in Ljubljana.

– Thyroid diseases: The diagnostic problem is to
determine one of the four possible diagnoses from
age, sex, histological data, and results of labora-
tory tests. However, in everyday practice physi-
cians use much more additional information for
diagnostics, which was not available for computer
processing. The data set of 884 patients with
known final diagnoses was provided for our ex-
periments by the Clinic for Nuclear Medicine of
the University Medical Center, Ljubljana.

– Rheumatology: The diagnostic problem is to se-
lect one of the six groups of possible diagnoses
from anamnestic data and status data. There
is over two hundred diagnoses used by physi-
cians specialists in rheumatology. However, gen-
eral practitioners have to decide among rheuma-
tological and orthopedical diseases for patients
to be further investigated and treated by special-
ists. Such decisions are unreliable and, by the
opinion of the physician specialist in rheumatol-
ogy, in more than 30% of cases wrong. The data
set of 355 patients with known final diagnoses
was provided for our experiments by the Clinic
for Rheumatology of the University Medical Cen-
ter, Ljubljana. All diagnoses were verified with
additional observations, laboratory tests, and X-
raying.

Detailed characteristics of the data sets used in this
experiment are summarized in Table 2. The entropy
(Ent, measured in bits) together with the number of
classes (Cl) shows the difficulty of the diagnostic prob-
lem. The number of attributes (Att) approximately
tells how well the patients are described. The majority
class (MC, given by the percentage of cases belonging
to this class) approximates the prior probability of the
most probable diagnosis. This is in fact the classifica-
tion accuracy of the default classifier which, regardless
of the patient, always selects the same most probable
diagnosis.

In our experiments one run was performed by ran-
domly selecting 70% of instances for learning and 30%
for testing. The results in Table 1 are averages of 10
runs. The average accuracy is given along with the av-
erage information score per answer [43]. Information
score is a performance measure that eliminates the in-

Table 2
Basic description of medical data sets.

Domain Cl Att Val/Att Ins MC Ent
PRIM 22 17 2.2 339 25% 3.89 bit
THYR 4 15 9.1 884 56% 1.59 bit
RHEU 6 32 9.1 355 66% 1.73 bit

fluence of prior probabilities of classes and can be ap-
plied to various kinds of incomplete and probabilistic
answers. This measure is necessary as in each domain
the default classifier would achieve high classification
accuracy.

Four physician specialists in each domain were
tested to estimate their diagnostic accuracy. From a set
of training data, a subset of patients was randomly se-
lected and their description printed on paper without
the diagnosis. The physicians were asked to select the
most probable diagnosis for each patient. The perfor-
mances of physicians in Table 1 are the averages of
four physician specialists in each domain. The physi-
cians were tested at the University Medical Center in
Ljubljana. While in rheumatology, diagnosing a pa-
tient on paper is somewhat unnatural, for the other two
domains it often occurs in practice.

Both algorithms significantly outperform the diag-
nostic performance of the physicians in terms of the
classification accuracy and the average information
score of the classifier. However, these results need a
qualification. It should be emphasized that in these ex-
periments both the physicians and the computer had
available exactly the same information. This is of-
ten unrealistic in medical practice. During the exam-
ination of the patient the physician often observes the
patient’s condition in terms of intuitive impressions
which cannot be formally described and therefore can-
not be typed in the computer. The lack of such infor-
mation may be in some cases of crucial importance for
the (in)ability to obtain more reliable diagnosis. The
accuracy results in Table 1 should therefore be under-
stood as an estimate of how well the algorithms per-
form, and not necessarily how badly the physicians di-
agnose. Although machine learning may induce more
reliable diagnostic algorithms from the limited descrip-
tion of the patient, such diagnostic tools definitely can-
not, and also are not intended to, replace the physi-
cians, but should be rather considered as helpful tools
that can improve the physicians’ performance. The re-
sults in this section and from other experiments con-
vincingly demonstrate that physicians’ diagnostic ac-
curacy could be improved with the aid of machine
learning.
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2.4.2. Temporal data abstraction
Time is intrinsically relevant to many medical di-

agnostic domains. Disease processes evolve in time,
patient records give the history of patients, and thera-
peutic actions, like all actions, are indescribable void
of time. In diagnostic systems for such domains, time
should be explicitly represented in an integral fashion
and reasoned with. The modeling of time enables a
more accurate formation of potential diagnostic solu-
tions (e.g., the presence of an abnormality may not
be diagnostically significant as such, but its specific
pattern of appearance is) and a more accurate evalua-
tion of the entertained solutions (e.g., the expected pic-
ture of a disease is different depending on the state of
its evolution). Below we give a concrete example of
the significance of time in medical diagnostic reason-
ing, from the domain of skeletal dysplasias and mal-
formation syndromes. These are developmental dis-
orders which affect the skeletal system to varying de-
grees. A simplified description of the skeletal dyspla-
sia Spondylo-epiphyseal Dysplasia Congenita (SEDC)
reads as follows:

SEDC presents from birth and can be lethal. It
persists throughout the lifetime of the patient. Peo-
ple suffering from SEDC can exhibit the following:
short stature, due to short limbs, from birth; mild
platyspondyly from birth; absence of the ossification of
knee epiphyses at birth; bilateral severe coxa-vara from
birth, worsening with age; scoliosis, worsening with
age; wide triradiate cartilage up to about the age of 11
years; pear-shaped vertebral-bodies under the age of
15 years; variable-size vertebral-bodies up to the age of
1 year; and retarded ossification of the cervical spine,
epiphyses, and pubic bones.

The text given in italic font refers to time, directly
or indirectly. The references to time are absolute,
where occurrences are specified with respect to some
(generic) fixed time-point, which here is birth, and ab-
solute durations are explicitly or implicitly specified.
For example property “SEDC present”, in the context
of some patient, persists throughout the span of that
person’s lifetime, whatever that might be. Since SEDC
can be lethal this duration could be zero (events birth
and death coincide). The occurrences (and hence du-
rations) of properties “wide triradiate cartilage” and
“pear-shaped vertebral-bodies”, at the granularity of
years, are approximated through the qualitative expres-
sions “up to about the age of ..” and “under the age of
..” respectively. We refer to this characteristic as abso-
lute vagueness [29, 30]. Some of the SEDC manifesta-
tions express abnormalities, namely retarded, with re-

spect to some ossification process. Other manifesta-
tions express temporal trends, namely the worsening
of properties “scoliosis” and “bilateral, severe, coxa-
vara”.

The above description of SEDC gives the overall
model for this disorder. Such a model need to be (tem-
porally) adapted to the case under consideration. For
example SEDC presents a different picture for an one
year old, a twelve year old, or a seventeen year old.

The diagnostic task for this domain is [35]: Given a
set of patient data determine which skeletal dysplasia
or malformation syndrome is the best explanation of
the patient situation. Patient data are largely obtained
from radiographs that give discrete snapshots of the de-
velopment of the patient’s skeleton. For example con-
sider the following data on some patient for whom the
available radiographs were for the pelvis and the lat-
eral spine at the ages of 2 and 7 years old and for the
hands and the lateral skull at the age of 10 years:

Carpal-bones small at the age of 10 years; femoral-
capital-epiphyses abnormal at the age of 2 years;
femoral-capital-epiphyses flat and irregular at the age
of 7 years; vertebral-end-plates irregular at the age of
7 years.

The patient information is point-based in contrast to
the medical knowledge which is largely interval-based.
In this domain patient information tends to be grossly
temporally incomplete. A competent, knowledge-
based, diagnostic system must be able to process the
available patient data in an intelligent way. This usu-
ally entails an ability to derive abstractions from the
given information, which fill in the gaps and can be di-
rectly matched against the model of a disorder, for a
patient of that age.

Abstractions for which time plays a central role are
called temporal abstractions. For example temporal
reasoning is central in establishing the existence of
some delay or prematurity in the unfolding of some
ossification process, or the existence of some trend.
Temporal data abstraction is presently attracting con-
siderable research interest [22, 27, 33, 48, 56, 60, 74,
76–79], as a fundamental intermediate reasoning pro-
cess for the intelligent interpretation of temporal data
in support of tasks such as diagnosis, monitoring, etc.
Background domain knowledge [34] can be effectively
utilized in the context of temporal data abstraction. In
the domain of skeletal dysplasias, knowledge on the
normal ‘behavior’ of ossification processes constitutes
significant background domain knowledge. A piece of
this knowledge is given below:
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The ossification process of the cervical-spine begins
at the eighth gestation week and terminates at the 25th
year of age.

This gives a high level description of the particular
ossification process. It is interesting to note that the
initiation of this process is given at the granularity of
weeks, with respect to fetal period, while its termina-
tion is given at the granularity of years and with respect
to maturity. The particular ossification process spans
a chain of temporal contexts (developmental periods);
this becomes apparent once the process is decomposed
into subprocesses at finer levels of description.

Knowledge on normality (such as descriptions of
normal ossification processes) serves different pur-
poses in a diagnostic process. Firstly such knowledge
can be used for establishing whether some observation
describes an abnormal situation, and therefore war-
rants an explanation. For example, the earliest, the pri-
mary centers of ossification of the anterior center for
arch of the first cervical vertebra, are expected to ap-
pear is the age of 12 months. Thus the non appearance
of these centres for a child of 10 months does not rep-
resent an observation of abnormality. Secondly knowl-
edge on normality can be used to further abstract ob-
servations of abnormality. For example if the above
observation was made at the age of 2 years this would
be an abnormality, more specifically a delay in the os-
sification of the vertebra since the latest age that such
centers are expected to appear is 15 months.

In general knowledge-based temporal data abstrac-
tion is a necessary process for diagnostic, monitoring,
therapy planning, and other medical tasks dealing with
dynamic situations. The data which is processed with
the aim of deriving intelligent abstractions (maximal
persistences, identification of distinct (compound) oc-
currences, temporal trends, periodic occurrences, other
complex temporal patterns, etc.), i.e, abstractions that
are directly matchable against diagnostic knowledge,
can have vastly different characteristics (grossly in-
complete or excessive in volume, numeric or qualita-
tive, vague, noisy, etc.). The temporal abstractions try
to fill in the gaps or explicate the significant informa-
tion from a large volume of very specific data, elimi-
nate the noise or vagueness, bring out potential depen-
dencies or interactions, etc. The derived abstractions
can be fallible since everything is dynamic and change-
able; moreover current abstractions may need to be
modified on the basis of old data that has now become
available (view updating [77]), or past abstractions are
revoked by new data (hindsight [73]). Deriving tempo-
ral abstractions on the basis of what is currently avail-

able or believed is one aspect of the problem; truth
maintenance of the derived abstractions is the other as-
pect. The overall problem of temporal data abstrac-
tion is open-ended and as already illustrated its solu-
tion depends critically on knowledge. Thus straightfor-
ward algorithmic solutions are not appropriate and this
is fairly evident in the various approaches proposed, a
selection of which is presented in the sequel.

3. Machine learning for medical diagnosis

In this section we give a description of specific re-
quirements that any machine learning system has to
satisfy in order to be used in the development of ap-
plications in medical diagnosis. Several learning algo-
rithms are then briefly described. We compare the per-
formance of all the algorithms on several medical diag-
nostic problems and their appropriateness for medical
diagnostic applications.

3.1. Requirements for machine learning systems

For a machine learning system to be useful in solv-
ing medical diagnostic problems the following features
are desired: good performance, ability to appropriately
deal with missing and noisy data (errors in data), trans-
parency of discovered diagnostic knowledge, ability to
explain the proposed diagnosis for a new patient, and a
reduction in the number of tests necessary to obtain a
reliable diagnosis.

In this section we first discuss these requirements.
Then we present a comparison study of seven represen-
tative machine learning algorithms to illustrate more
concretely the points made.

– Good performance: The algorithm must be able
to extract significant information from the avail-
able data. The diagnostic accuracy on new cases
has to be as high as possible. Typically, most
of the algorithms perform at least as well as the
physicians and often the classification accuracy
of machine classifiers is better than that of physi-
cians when using the same patient descriptions.
Therefore, if it is possible to measure the accu-
racy of physicians, their performance can be used
as a lower bound on the required accuracy of the
machine learning system in the given problem.
In the majority of learning problems, various ap-
proaches typically achieve similar performance in
terms of classification accuracy although in some
cases some algorithms may perform significantly
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better than the others [55]. Therefore, almost none
of the algorithms can be excluded apriori with re-
spect to the performance criterion. Rather, sev-
eral learning approaches should be tested on the
available data and one or few with best estimated
performance should be considered for the devel-
opment of the application.

– Dealing with missing data: In medical diagnosis
very often patient descriptions lack certain data.
Machine learning algorithms have to be able to
appropriately deal with such incomplete descrip-
tions.

– Dealing with noisy data: Medical data typically
suffer from uncertainty and errors. Therefore ma-
chine learning algorithms, appropriate for medi-
cal applications, have to have effective means for
handling noisy data.

– Transparency of diagnostic knowledge: The
generated knowledge and the explanation of deci-
sions accruing from the application of this knowl-
edge should be transparent to the physician. He
should be able to analyze and understand the gen-
erated knowledge. Ideally, the automatically gen-
erated knowledge will provide to the physician a
novel point of view on the given problem, and
may reveal new interrelations and regularities that
the physician did not see before in an explicit
form.

– Explanation ability: The system (applying the
discovered diagnostic knowledge) must be able to
explain decisions when diagnosing new patients.
When faced with a curious solution of a new prob-
lem the physician shall require further explana-
tion, otherwise he will not seriously consider the
system’s suggestions. The only possibility that
physicians would accept a “black box” classifier
is where such a classifier would outperform by
a very large margin all other classifiers including
the physicians themselves in terms of classifica-
tion accuracy. However, such a situation is highly
improbable and the authors of this paper are not
aware of any.

– Reduction of the number of tests: In medical
practice the collection of patient data is often ex-
pensive, time consuming, and harmful for the pa-
tients. Therefore, it is desirable to have the clas-
sifier that is able to reliably diagnose with a small
amount of data about the patients. This can be ver-
ified by providing all candidate algorithms with
the limited amount of data. However, the process
of determining the right subset of data may be

time consuming as it is essentially a combinatorial
problem. Some of the machine learning systems
are themselves able to select the appropriate sub-
set of attributes, i.e., the selection is done during
the learning process and may be more appropriate
than others that lack this facility.

3.2. Description of the tested algorithms

In this subsection we briefly describe seven algo-
rithms that were used in our experiments: Assistant-R,
Assistant-I, LFC, the naive and semi-naive Bayesian
classifier, backpropagation with weight elimination,
and the k-nearest neighbors algorithm.

Assistant-R: This is a reimplementation of the Assis-
tant learning system for top down induction of deci-
sion trees [8]. The basic algorithm goes back to CLS
(Concept Learning System) developed by Hunt et al.
[25] and was reimplemented and improved by several
authors (see [66] for an overview). The main features
of Assistant are binarization of attributes, decision tree
prepruning and postpruning, incomplete data handling,
and the use of the naive Bayesian classifier to calculate
the classification in “null leaves”.

The main difference between Assistant and its reim-
plementation Assistant-R is that ReliefF is used for at-
tribute selection [42]. ReliefF is an extended version of
Relief, developed by Kira and Rendell [38, 39], which
is a non-myopic heuristic measure that is able to esti-
mate the quality of attributes even if there are strong
conditional dependencies between attributes. For ex-
ample, Relief can efficiently estimate the quality of at-
tributes in parity problems. In addition, wherever ap-
propriate, instead of the relative frequency, Assistant-R
uses the m-estimate of probabilities, which was shown
to often improve the performance of machine learning
algorithms [7].

Assistant-I: A variant of Assistant-R that instead of
ReliefF uses information gain for the selection crite-
rion, as does the original Assistant. However, the other
differences to Assistant remain (m-estimate of proba-
bilities).

LFC: Ragavan and Rendell [69] use limited lookahead
in their LFC (Lookahead Feature Construction) algo-
rithm for top down induction of decision trees to de-
tect significant conditional dependencies between at-
tributes for constructive induction. They show inter-
esting results on some data sets. Robnik [70] devel-
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oped a reimplementation of their algorithm which was
then used in our experiments. LFC generates binary
decision trees. At each node, the algorithm constructs
new binary attributes from the original attributes, using
logical operators (conjunction, disjunction, and nega-
tion). From the constructed binary attributes, the best
attribute is selected and the process is recursively re-
peated on two subsets of training instances, corre-
sponding to two values of the selected attribute. For
constructive induction a limited lookahead is used. The
space of possible useful constructs is restricted, due to
the geometrical representation of the conditional en-
tropy which is the estimator of the attributes’ quality.
To further reduce the search space, the algorithm also
limits the breadth and the depth of search.

As LFC uses lookahead it is less myopic than the
greedy algorithm of Assistant. The comparison of ex-
perimental results of LFC and Assistant-R contrasts
the performance of the greedy search in combination
with ReliefF versus the lookahead strategy. To make
results comparable to Assistant-R we equipped LFC
with the same pruning and probability estimation fa-
cilities. All tests were performed with a default set
of parameters (depth of the lookahead 3, beam size
20), although in some domains better results may be
obtained by parameter tuning. However, higher val-
ues of the parameters may combinatorially increase the
search space of LFC, which makes the algorithm im-
practical.

Naive Bayesian Classifier: A classifier that uses the
naive Bayesian formula to calculate the probability of
each class C given the values Vi of all the attributes for
an instance to be classified, assuming the conditional
independence of the attributes given the class:

P (C|V1..Vn) = P (C)
∏

i

P (C|Vi)
P (C)

A new instance is classified into the class with maxi-
mal calculated probability. We used the m-estimate of
probabilities [7]. For prior probabilities the Laplace’s
law of succession was used. In our experiments, the
parameter m was set to 2.0 (this setting is usually used
as default and, empirically, gives satisfactory results
[7]).

The relative performance of the naive Bayesian clas-
sifier can serve as an estimate of the conditional inde-
pendence of attributes.

Semi-naive Bayesian Classifier: Kononenko [40] de-
veloped an extension of the naive Bayesian classifier

that explicitly searches for dependencies between the
values of different attributes. If such dependency is
discovered between two values Vi and Vj of two dif-
ferent attributes then they are not considered as condi-
tionally independent. Accordingly the term

P (C|Vi)
P (C)

× P (C|Vj)
P (C)

in the naive Bayesian formula is replaced with

P (C|Vi, Vj)
P (C)

For such a replacement a reliable approximation of
the conditional probability P (C|Vi, Vj) is required.
Therefore, the algorithm trades-off between the non-
naivety and the reliability of approximations of proba-
bilities.

Backpropagation with weight elimination: The mul-
tilayered feedforward artificial neural network is a hi-
erarchical network consisting of two or more fully
interconnected layers of processing units - neurons.
The task of the learning algorithm is to determine the
appropriate weights on the interconnections between
neurons. Backpropagation of error in multilayered
feedforward neural network [72] is a well known learn-
ing algorithm and also the most popular among al-
gorithms for training artificial neural networks. Well
known problems with backpropagation are the selec-
tion of the appropriate topology of the network and
overfitting the training data. An extension of the basic
algorithm that uses the weight elimination technique
[87] addresses both problems. The idea is to start with
too many hidden neurons and to introduce into the cri-
terion function a term that penalizes large weights on
the connections between neurons. With such criterion
function the algorithm, during training, eliminates an
appropriate number of weights and neurons in order
to obtain the appropriate generalization on the training
data.

k-NN: The k-nearest neighbor algorithm. For a given
new instance the algorithm searches for k nearest train-
ing instances and classifies the instance into the most
frequent class of these k instances. The presented re-
sults in the next section were obtained with Manhattan-
distance. The results using Euclidian distance are prac-
tically the same. The best results with respect to pa-
rameter k are presented, although for fair comparison
such parameter tuning should be allowed only on the
training and not the testing sets of data.
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3.3. Performance of algorithms on medical
diagnostic problems

We compared the performance of the algorithms on
several medical data sets.

– Data sets obtained from the University Medical
Center in Ljubljana, Slovenia: the problem of lo-
cating the primary tumour in patients with metas-
tases (PRIM), the problem of determining the type
of the cancer in lymphography (LYMP), diagnosis
in rheumatology (RHEU), and diagnosis of sport
injuries (SPORT). The problem domains PRIM,
LYMP and RHEU are briefly described in Sec-
tion 2.4.1 (see also [45]). The problem domain
SPORT is described in detail in [89].

– Data sets obtained from the StatLog database
[55]: diagnosis of diabetes (DIAB) and diagnosis
of heart diseases (HEART).

The characteristics of these data sets are given in Ta-
ble 3.

Table 3
Basic description of medical data sets.

Domain Cl Att Val/Att Ins MC Ent
PRIM 22 17 2.2 339 25% 3.89 bit
THYR 4 15 9.1 884 56% 1.59 bit
RHEU 6 32 9.1 355 66% 1.73 bit
LYMP 4 18 3.3 148 55% 1.28 bit
DIAB 2 8 8.8 768 65% 0.93 bit
HEART 2 13 5.0 270 56% 0.99 bit
SPORT 30 49 3.7 118 15% 4.49 bit

Results of the experiments on these data sets are
given in Fig. 3. These are averages over 10 runs for
each domain. In each run, the dataset was randomly
partitioned into 70% of data for learning, and 30% for
testing.

3.4. Appropriateness for medical diagnosis

In this section we discuss how various algorithms
fit the requirements described in Section 3.1. Table 4
summarizes the comparison of algorithms with respect
to the appropriateness for developing applications in
medical diagnostic problems.

Among the compared algorithms only decision tree
builders are able to select the appropriate subset of at-
tributes. With respect to the criterion of reduction of
the number of tests, these algorithms have clear advan-
tage over other algorithms.

With respect to the performance criterion the algo-
rithms are more similar. The best performance was
achieved by naive and semi-naive Bayesian classifiers.
In medical data sets, attributes are typically relatively
conditionally independent given the class. Physicians
try to define conditionally independent attributes. Hu-
mans tend to think linearly and independent attributes
make the diagnostic process easier. Therefore, it is
not surprising that the Bayesian classifiers show clear
advantage on medical data sets. It is interesting that
the performance of the k-NN algorithm is also good in
these domains.

In our experiments, on the DIAB dataset, all clas-
sifiers perform equally well, with the exception of the
Bayesian classifiers which are significantly better. LFC
achieved significantly better results than the other two
inductive algorithms in the LYMP domain, where con-
structive induction seems to be useful. However, LFC
performed significantly worse in the RHEU domain
while in the other domains the three inductive algo-
rithms performed equally well.

With respect to the transparency and the explanation
ability criteria there are great differences between the
algorithms:

– k-nearest neighbors: As k-NN does no general-
ization, the transparency of knowledge represen-
tation is poor. However, to explain the decision of
the algorithm, a predefined number (k) of nearest
neighbors from the training set is shown. This ap-
proach is analogous to the approach used by do-
main experts who make decisions on the basis of
previously known similar cases. Such explanation
ability is assessed by physicians as acceptable.

– Naive and semi-naive Bayes: Here, knowledge
representation consists of a table of conditional
probabilities which seems to be of interest to
physicians. Therefore such knowledge represen-
tation is assessed as good. On the other hand, the
decisions of Bayesian classifiers can be naturally
interpreted as the sum of information gains [41].
The amount of information necessary to find out
that an instance belongs to class C, is given by:

− log2 P (C|V1, ..., Vn) = − log2 P (C) −
− ∑

i(− log2 P (C) + log2 P (C|Vi))

Therefore, the decisions of the Bayesian classi-
fiers can be explained with the sum of informa-
tion gains from all attributes in favor or against the
given class. In the case of the semi-naive Bayesian
classifier, the process is exactly the same, except
when the tuples of joined attribute/value pairs oc-



Fig. 3. Classification accuracy of learning systems on medical data sets.

Table 4
The appropriateness of various algorithms for medical diagnosis.

classifier perfor- trans- explanations reduction miss. data
mance parency handling

Assistant-R good very good good good acceptable
Assistant-I good very good good good acceptable
LFC good good good good acceptable
naive Bayes very good good very good no very good
semi-naive Bayes very good good very good no very good
backpropagation very good poor poor no acceptable
k-NN very good poor acceptable no acceptable

cur. In this case, instead of simple attribute values,
the joined values are used.
Such information gains can be listed in a table
to sum up the evidence for/against the decision.
Figures 4 and 5 provide a typical explanation of
one decision. Each attribute has an associated
strength, which is interpreted as the amount of in-
formation in bits provided by that attribute. It can
be in favor or against the classifier’s decision. One

of the main advantages of such explanation is that
it uses all available attributes. Such explanation
was found by physicians as very good and they
feel that Bayesian classifiers perform the task in a
way similar to how they diagnose. Namely, they
also sum up the evidence for/against a given diag-
nosis.

– Backpropagation neural networks have non-
transparent knowledge representation and in gen-
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Fig. 4. Naive Bayes: An explanation of the decision in the diagnosis of sport injuries.

Fig. 5. Graphical explanation of the decision in the diagnosis of the sport injuries by the naive Bayesian classifier.

eral cannot easily explain their decisions. This
is due to the large number of real-valued weights
which all influence the result. In some cases it is
possible to extract symbolic rules from the trained
neural network. However, the rules tend to be
large and relatively complex. Craven and Shav-
lik [13] compare rules extracted from a neural net-
work with rules produced by Quinlan’s [68] C4.5
system. The rules for a NetTalk data set extracted
from a neural network have on average over 30 an-
tecedents per rule compared to 2 antecedents for
C4.5. Such rules are too complicated and hardly

offer a useful explanation to a non-technically ori-
ented domain expert.

– Decision trees (Assistant-I and Assistant-R) can
be used without the computer and are fairly easy
to understand. Positions of attributes in the tree,
especially the top ones, often directly correspond
to the domain expert’s knowledge. However, in
order to produce general rules, these methods use
pruning which drastically reduces the tree sizes.
Correspondingly, the paths from the root to the
leaves are shorter, containing only few, although
most informative attributes. In many cases the



Nada Lavrač∗ et al. / Intelligent data analysis for medical diagnosis: Using machine learning and temporal abstraction 15

physicians feel that such a tree describes the diag-
noses too poorly and is therefore not sufficiently
informative [63]. In several problems the physi-
cians have preferred the decision trees generated
by Assistant-R. It seems that the estimates of Reli-
efF correspond to the way the physicians estimate
the importance of attributes. In fact, the structure
of trees generated by Assistant-I are often consid-
ered by physicians as strange and unnatural.

– Lookahead feature construction (LFC) also
generates decision trees. However, in each node
a potentially complex logical expression is used
instead of a simple attribute value. The gener-
ated trees can therefore be smaller. The expres-
sions may represent valid concepts from the do-
main. However, on the lower levels of the tree the
expressions are often very specific and typically
meaningless. Due to complex logical expressions
in nodes, the number of attributes used to classify
an instance can be higher than in usual decision
trees.

3.5. Multistrategy learning

Multistrategy learning approaches, as proposed by
[54], construct several classifiers using different ma-
chine learning approaches and then use all the classi-
fiers on new problems by combining their decisions.
We used this idea in the prediction of the femoral neck
fracture recovery problem [47]. In this study the results
of different classifiers were combined (using the naive
Bayesian formula) to make the final decision which
can be explained as a weighted sum of single decisions.
The physicians’ evaluation of this approach indicates
that with a multistrategy approach the reliability and
the interpretability of the results is much better than
when using a single learning strategy (e.g., decision
tree learning only).

4. Temporal abstraction for medical diagnosis

Abstraction is a central concept in many disciplines
especially those that deal with modeling and problem
solving, such as informatics and engineering. Any pro-
cess that hides the detail (in some situation), which
can be erroneous and misleading at places, and brings
out the essence (from the perspective of some goal)
can be termed as an abstraction process. Such a pro-
cess enables one to view the given situation from a
more global and in some sense detached perspective

and avoids getting bogged down to local, unimportant,
detail. Data abstraction in the context of knowledge-
based problem solving was introduced by Clancey in
the mid eighties [10]. Temporal data abstraction re-
search is not more than ten years old, but in spite of
its young age, this emerging technology has managed
to break substantial ground with respect to real life
medical problems. Atemporal data abstraction is sub-
stantially simpler than temporal data abstraction; time
brings a whole new dimension and complexity.

The proposed approaches to temporal data abstrac-
tion are to a large extent domain independent although
the motivation for most of these lies in specific, real,
medical problems. So unlike machine learning ap-
proaches that have been applied to many different
problems and thus concrete evaluation results on their
performance are available, this is not so for temporal
data abstraction methods. The majority of these have
only been applied to a single medical problem and the
evaluation results, although very promising, are at best
of a preliminary stage. Furthermore a number of these
approaches have been developed primarily for moni-
toring tasks, either for the sort of acute monitoring that
takes place in intensive care units, or for discrete moni-
toring over long periods of time, perhaps for the rest of
the patient’s life, as in the case of chronic disorders. In
continuous monitoring of acute problems one is faced
with large volumes of data that need to be interpreted,
while in discrete monitoring one is faced with largely
incomplete and often vague recollections of what has
happened. Noise can be a characteristic of either type.
The scope of this paper is diagnosis and not monitor-
ing as such. Monitoring functions to detect as timely
as possible (potentially) alarming situations, such as
when a therapeutic regime is not working for the pa-
tient, or when the status of a person diverges from nor-
mality or some steady state. Thus a monitoring sys-
tem is required to answer diagnostic questions such as
“Are things steady or are they improving or worsen-
ing?”, or “Is the situation normal or some misbehavior
is detected?”. Monitoring therefore involves repetitive
application of diagnostic reasoning.

Temporal data abstraction can in fact be used as a
stand alone method for the intelligent interpretation,
and possibly visual presentation, of a patient’s relevant
history as dictated by a moving time window underly-
ing the higher level decision making process. So a tem-
poral data abstraction engine can be viewed as an intel-
ligent assistant to a physician. This engine is (continu-
ously) fed with new data on the patient (both referring
to the present or the past, and possibly revoking previ-
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ously specified data), and presents, to the physician, in
a transparent and comprehensive fashion the informa-
tion abstracted from the raw data. The physician can
then use this information to draw diagnostic, therapeu-
tic, or whatever other conclusions of relevance to the
decision making task at hand.

In the remaining of this section first we list the gen-
eral requirements for temporal data abstraction meth-
ods and then we overview some of the recent tem-
poral data abstraction proposals. We start with Sha-
har and Musen’s proposal, that has been implemented
in the R’ESUM’E system [76–79]; this aims to pro-
vide a very generic and reusable approach to tempo-
ral data abstraction. Next we overview two proposals
that are more specific in scope, namely the proposals
by Haimowitz and Kohane [22], and Miksch et al. [56]
respectively implemented in the systems TrenDx and
VIE-VENT. Both proposals focus on the derivation of
trends. We conclude the section by presenting an ap-
proach by Keravnou regarding the derivation of peri-
odic occurrences. Periodicity, or more generally rep-
etition, is not a specific focus in any of the other ap-
proaches.

All these approaches are knowledge-based and thus
for their application in a specific domain (a) the types
of knowledge underlying their operation must be avail-
able, and (b) the assumed (generic) characteristics and
properties of the processed data must be satisfied by
the data of the given domain.

4.1. Requirements for temporal data abstraction

Temporal data abstraction can have the following
uses:

– For the support of a decision making task (diag-
nosis, monitoring, therapy planning, etc.) with re-
spect to an individual patient, by presenting the
relevant (moving) history of the patient at a level
of abstraction appropriate to the particular task.
The latter does not need to be automated in the
form of a computer-based system, but it can be
directly performed by the human problem solver.
In this mode of operation, the temporal data ab-
straction process would be required to present its
output in a visual form.

– For the preprocessing of the (frozen) histories of
a number of patients. The abstracted histories are
then fed to a data mining algorithm for the in-
duction of knowledge (such as diagnostic rules)
for the particular task. Current machine learn-

ing approaches do not attempt to first abstract, on
an individual basis, the example cases that consti-
tute their training sets, and then to apply whatever
learning technique they employ for the induction
of further generalizations. Strictly speaking ev-
ery machine learning algorithm performs a kind
of abstraction over the entire collection of cases;
however it does not perform any abstraction on
the individual cases. Cases tend to be atemporal,
or at best they model time (implicitly) as just an-
other attribute. Data abstractions on the selected
cases are often mannually performed by the do-
main experts as a preprocessing step. Such man-
ual processing is prone to non uniformity and in-
consistency, while the automatic extraction of ab-
stractions is uniform and objective. The integra-
tion of temporal data abstraction methods with
machine learning algorithms will give a new per-
spective to machine learning with the aim of in-
ducing “deeper” knowledge.

The essential requirement for temporal data abstrac-
tion, under either of its uses, is derivation of all appro-
priate abstractions, of any degree of complexity, and
no derivation of erroneous or misleading abstractions.
Under its first use discussed above, where everything
is dynamic, truth maintenance is also an essential re-
quirement. Completeness, relevance, and correctness
of derivations and truth maintenance are the overall re-
quirements. Within these requirements, the more spe-
cific requirements are (these are quite similar to the
corresponding requirements for machine learning):

– Dealing with noisy or vague data.
– Dealing with missing data.
– Dealing with a variety of data.
– Deriving transparent and comprehensible abstrac-

tions.
– Visually presenting (if required) the derived ab-

stractions in a highly explanatory manner.
– Deriving and revising abstractions in a time effi-

cient manner (for dynamic decision support).

Since temporal data abstraction is knowledge driven,
the means for achieving, at least the conceptual re-
quirements, are knowledge-based.

4.2. Selected approaches

In this section, for illustration purposes, we briefly
overview four approaches to temporal data abstraction.
Detailed accounts on the selected approaches and their
so far evaluation are available in the literature and the
reader is referred there.
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4.2.1. Shahar and Musen’s approach
Shahar and Musen [76–79] have developed a know-

ledge-based framework for the creation of abstract, in-
terval concepts from time-stamped clinical data. The
framework has been implemented in the R’ESUM’E
system under the CLIPS environment. The principles
underlying this framework are genericity and reusabil-
ity and the use of knowledge is emphasized. More
specifically the proposers define the types of knowl-
edge required (structural, classification, temporal se-
mantic, and temporal dynamic, knowledge) for the
identified temporal abstraction functionalities (context
formation, contemporaneous abstraction, temporal in-
ference, temporal interpolation, and temporal pattern-
matching). In a specific application of the framework
the actual knowledge is organized under various on-
tologies for parameter-properties, events, contexts, and
dynamic induction relations of context intervals.

The framework supports four types of abstractions:
state, gradient, rate and pattern. Given a historic
database, R’ESUM’E aims to infer, in a non directed
fashion, all derivable abstractions of any degree of
complexity. The process of derivation is repeatedly
applied since by its very nature a historic database is
never fixed, and also truth maintenance is supported.

A significant novelty of this approach, is the dy-
namic derivation of interpretation contexts; these could
be contemporaneous, prospective and retrospective.
Interpretation contexts are induced by events, such as
therapeutic actions. Two or more interpretation con-
texts could define generalized interpretation contexts;
moreover contexts could be nonconvex, if they are in-
duced on the basis of repetitive events. Abstractions
are generated on the basis of interpretation contexts,
thus the interpretation of the patient data is context sen-
sitive. Several concurrent interpretation contexts can
be induced, maintained and queried, thus creating dif-
ferent interpretations for the same set of data points.

In summary, the underlying ontologies, required
knowledge, and supported functionalities have been
specified in great detail, and the soundness of the
proposal has been demonstrated through its appli-
cation to a number of medical domains (therapy
for insulin-dependent diabetes, protocol-based care of
AIDS and of chronic GVHD, and monitoring of chil-
dren’s growth) with promising results.

4.2.2. Haimowitz and Kohane’s approach
Haimowitz and Kohane [22] have developed a sys-

tem, TrenDx, with the specific focus of medical trend
diagnosis. Generic trends are defined through the no-

tion of a trend template that gives great power of ex-
pression. This is both the strength and the limitation of
this approach. Strength because of the higher power of
expression supported. Limitation because this expres-
siveness is required if one wishes to define dynamic
processes (e.g. disorder processes) in terms of the dif-
ferent phases comprising them, the uncertainty gov-
erning the transitions from one phase to the next, the
significant events marking these transitions and var-
ious constraints on parameter-values associated with
the different phases. Thus in using this approach one
is forced to intermix data abstraction knowledge with
diagnostic knowledge per se; there is no clear sepa-
ration between the two, and no diagnostic indepen-
dent specification of temporal abstraction knowledge
(of the types advocated by Shahar). In other words a
trend template is a fairly sophisticated mechanism for
the specification of temporal models for dynamic pro-
cesses, both normal and abnormal processes. There is
no decoupling between an intermediate level of data
interpretation (derivation of abstractions) and a higher
level of decision making. Data interpretation involves
the selection of the trend template instantiation that
matches best the raw temporal data (this covers noise
detection and positioning of transitions). The selected
trend template instantiation is the final solution; thus
temporal data abstraction and diagnostic (or other) rea-
soning per se are tangled up into a single process. This
makes the overall reasoning more efficient, but it limits
the genericity of the approach; the derivation of the ab-
stractions is very much directed (trend template driven)
and hence the potentiality of this approach as a prepro-
cessing tool for machine learning is somewhat limited;
for the discovery of new knowledge (i.e., new diagnos-
tic rules) the abstractions used should be derived in a
nondirected, i.e., in a non-biased fashion.

TrenDx has been applied, with promising results,
to the diagnosis of pediatric growth disorders and the
detection of significant trends in hemodynamics and
blood gas in intensive care unit patients.

4.2.3. Miksch et al. approach
The third approach to be discussed is by Miksch et

al. [56]. This approach, like the one by Haimowitz and
Kohane, is aimed at a specific type of applications, and
thus unlike the approach by Shahar and Musen, the aim
is not to formulate in generic terms a knowledge-based
temporal abstraction task. This proposal has been re-
alized in VIE-VENT, a system for data validation and
therapy planning for artificially ventilated newborn in-
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fants. Like R’ESUM’E, VIE-VENT is implemented in
the CLIPS environment.

The overall aim is the context-based validation and
interpretation of temporal data, where data can be
of different types (continuously assessed quantitative
data, discontinuously assessed quantitative data, and
qualitative data). The interpretation contexts are not
dynamically derived, but they are defined through
schemata with thresholds that can be dynamically tai-
lored to the patient under examination. The context
schemata correspond to potential treatment regimes;
which context is actually active depends on the cur-
rent regime of the patient. If the interpretation of data
points to an alarming situation, the higher level rea-
soning task of therapy assessment and (re)planning is
invoked which may result in changing the patient’s
regime thus switching to a new context. Context
switching should be done in a smooth way and again
relevant thresholds are dynamically adapted to take
care of this. The data abstraction process per se is fairly
decoupled from the therapy planning process. Hence
this approach differs from the previous one where the
selection and instantiation of an interpretation context
(trend template) represents the overall reasoning task.
In VIE-VENT the data abstraction process does not
need to select the interpretation context, as this is given
to it by the therapy planning process.

The types of knowledge required are classification
knowledge and temporal dynamic knowledge (e.g., de-
fault persistences, expected qualitative trend descrip-
tions, etc.). Everything is expressed declaratively in
terms of schemata that can be dynamically adjusted de-
pending on the state of the patient. First quantitative
point-based data are translated into qualitative values,
depending on the operative context. Smoothing of data
oscillating near thresholds then takes place. Interval
data are then transformed to qualitative descriptions re-
sulting in a verbal categorization of the change of a pa-
rameter over time, using schemata for trend-curve fit-
ting. The system deals with four types of trends: very
short-term, short-term, medium-term and long-term.

4.2.4. Keravnou’s periodicity approach
The three approaches discussed do not explicitly ad-

dress the derivation of periodic happenings. So we
conclude this section by overviewing an approach pro-
posed by Keravnou that focuses on the derivation of
periodicity [33]. This approach, that has not yet been
evaluated in a real medical domain, is part of a big-
ger effort that aims to develop a generic and reusable
temporal kernel for medical knowledge-based problem

solvers; temporal data abstraction features as one of the
derivation functionalities of this kernel and the deriva-
tion of periodicity is a subfunctionality of temporal
data abstraction [31, 32].

Periodicity is very relevant to medical reasoning.
As Kahn [26] puts it “Most medical phenomena recur.
Illnesses reappear, symptoms return, treatments start,
stop, and resume. Frequently, events from one clini-
cal episode provide key patient-specific insights about
what might transpire during a later episode. Thus, the
ability to reason about recurring events is an essential
aspect of temporal problem-solving.”.

The principle underlying the time-ontology that con-
stitutes the foundations of the proposed periodicity ap-
proach is that for time to be properly integrated in a
knowledge-based system, it should be an integral as-
pect of the entities that form the processing elements
of the system. The central primitive of the ontology is
the time-object which is a dynamic entity, viewed as
a tight coupling between a property and an existence;
its existence can be expressed with respect to differ-
ent temporal contexts (time-axes), and thus depend-
ing on the context of reference (and associated time
granularity) the time-object can be treated as a point-
object (and thus indivisible) or as an interval-object
whose existence can also be governed with uncertainty.
Time-objects can be compound and can be involved
in causal interactions. This way the notion of a time-
object unifies three essential types of knowledge, tem-
poral, structural, and causal.

Periodic occurrences are modeled as compound
time-objects, subsuming a number of other time-
objects. A generic periodic time-object is specified
through a repetition element, a repetition pattern, and
a progression pattern (over the sequence of instanti-
ations of the repetition element). The repetition ele-
ment could itself be a periodic occurrence (thus having
nested periodicity), or a trend, etc.

The aim of the proposed approach is to derive, in a
nondirected fashion, all periodic occurrences, of any
order of complexity, which are derivable from some
patient history, where the patient history is a collec-
tion of concrete time-objects. The types of knowl-
edge required include temporal-semantic knowledge
of properties, regularity patterns, knowledge on dom-
inant/subordinate relations between property subjects,
and knowledge relating to the justification of exclu-
sions.

There are two basic algorithms: (a) an algorithm
that derives periodic occurrences within a sequence of
time-objects sharing the same property subject (order-
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1 periodicity); and (b) an algorithm that derives peri-
odic occurrences across two sequences of time-objects
with different property subjects (periodicity across two
subjects). These algorithms are recursively used in the
context of the algorithm for the derivation of order-n,
n > 1, periodicity (periodic occurrences involving n
distinct property subjects). The acceptable regularity
patterns as passed as parameters to these algorithms.
The selection of the best periodic occurrence out of a
set of competing plausible periodic occurrences can be
based on domain specific heuristics and the justifica-
tion of the exclusion of time-objects (whose existences
overlap with the existence of the conjectured periodic
occurrence) is knowledge-based. This effort is ongo-
ing.

In summary, a data abstraction engine is more
usefully deployed as a process decoupled from a
higher level reasoning engine (Fig. 6), as this achieves
reusability and enables its utilization by a data mining
engine. An abstraction engine that is embedded within
a decision-making engine cannot be deployed by a data
mining engine since the generation of abstractions (or
more accurately solutions) is biased by the needs of the
relevant decision-making engine (Fig. 7).
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5. Temporal data abstraction for machine learning

This section discusses the potential of temporal data
abstraction for the discovery of medical knowledge by
machine learning.

Data is patient specific, while medical knowledge is
patient independent and consists of generalizations that
apply across patients. Machine learning for medical
domains aims to discover medical knowledge by in-
ducing generalizations from records of representative
samples of patients. Trying to induce such generaliza-
tions directly from the raw patient data is particularly
hard when generalizing from time stamped monitoring
data. Consider a patient record stating that “the blood
pressure reading was 9 at 10 am on March 26th 1966”.
Making generalizations from patient data recorded at
this level means, for instance, trying to find the same
datum in more than one patient’s record; this is highly
unlikely. This example shows that generalizations can
be more effectively discovered by comparing patient
profiles at a higher level of abstraction, in terms of de-
rived data abstractions such as periodic occurrences,
trends and other temporal patterns.

Different raw data can yield the same abstractions,
even if they differ substantially in volume. The num-
ber of derived abstractions is relatively constant across
patients with the same medical situation, and of course
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this number is considerably smaller than the number
of raw data. Temporal data abstractions reveal the
essence of the profile of a patient, hide superfluous de-
tail, and last but not least eliminate noisy information.
Furthermore, the temporal scope of abstractions like
trends and periodic occurrences are far more meaning-
ful and prone to adequate comparison than the time-
points corresponding to raw data. If the same complex
abstraction, such as a nested periodic occurrence, is as-
sociated with a significant number of patients from a
representative sample, it makes a strong candidate for
being a significant piece of knowledge. Sharing a com-
plex abstraction is a strong similarity while sharing a
concrete datum is a weak similarity, if at all.

Roughly, medical knowledge discovery aims to ei-
ther refine the model of a known disorder, or to
discover a new disorder/syndrome from undiagnosed
cases. Temporal data abstraction can support both
these types of knowledge discovery.

In the first case, tools for inductive concept learn-
ing can be used to synthesize or refine the model of
a known disorder. A sample of patients to be used
for learning is in theory easily identifiable; it consists
of patients that have been correctly diagnosed to have
suffered from the particular disorder. However, if the
knowledge of this disorder is still vague and incom-
plete, it is possible that the sample includes also pa-
tients that were wrongly diagnosed to have suffered
from that disorder. Temporal data abstraction can re-
veal such mistakes. To avoid such mistakes, the pa-
tients used in a sample should be carefully monitored
over relevant periods of time to ensure that the raw data
on each of them is as complete as possible. Complex
abstractions shared by an adequate proportion of the
monitored patients may well be promoted to features
of the given disorder.

In the second case, tools for clustering can be used
to discover new disorders. In this case the sample of
patients is not immediately determined. This leads to
the difficulty that it may not be possible or justifiable
to closely monitor every undiagnosed case, and hence
the patient records can be severely incomplete. How-
ever, a data abstraction process can reveal patients war-
ranting closer inspection and monitoring. For example,
if a number of undiagnosed patients appear to share
some (complex) temporal abstraction, this could be a
strong similarity and closer comparison between these
patients can reveal a common picture at a high level of
abstraction.

The above examples indicate the way how to effec-
tively combine temporal data abstraction and machine

learning. In the future, temporal data abstraction may
have an important role in data preprocessing for ma-
chine learning and much research in expected in this
area.

6. Conclusion

Although the results of applying various machine
learning algorithms in medical diagnosis, reported in
Section 3, seem excellent, this technology has not been
widely accepted in medical practice. Reasons usually
given by physicians themselves are diverse:

– Inflexibility of the knowledge representation. The
set of attributes that describe the patients must be
fixed. The information that is used by the rules to
derive the final diagnosis is limited to strictly de-
fined parameters while subjective, informal, and
fuzzy notions (like intuition, impression, etc.) can
not be represented in a formal and symbolic way.

– Physicians often claim that if they are not sure
about the final diagnosis, usually further exami-
nations (e.g. laboratory tests) may be performed
to verify the diagnosis. In situations where fur-
ther examinations are easy, the physicians do not
feel the need for assistance in the diagnostic pro-
cess. In prognosis there is no possibility for fur-
ther examination that would confirm the predic-
tion. For that reason the prognostic problems are
even more attractive for machine learning than di-
agnostic problems [90].

– Physicians often claim that they are too busy to
use any additional tool for decision making. In
everyday practice it is too time and/or energy con-
suming to type in the data into the computer in or-
der to use the computer support in the diagnostic
process.

– In their regular education, physicians do not
encounter intelligent data analysis techniques,
which are seldomly included even in more spe-
cialized courses of medical informatics. In their
research, they therefore prefer to use classical sta-
tistical analysis, which they are much more famil-
iar with.

– Non-negligible is also subjective resistance of
physicians to new diagnostic technology. It is of-
ten felt that the diagnosis problem, considered as
perhaps the most critical and sensitive task, will
be left to machines, thereby leaving the physicians
without power to control and without responsibil-
ity.
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– We have also rather frequently encountered quite
irrational reasons for resisting computer diagno-
sis. These have actually been described by some
physicians as follows. Diagnosis is regarded by
some physicians as the premium intellectual task
of their profession. As such, this task requires in-
depth knowledge, unexpected ideas, and in partic-
ular intuition. Therefore diagnosis is a bit of an art
that is impossible to explain and formalize. How
can it then be done by computers? And if comput-
ers could do it, that would destroy all the magic
and professional pride.

In the past we have developed several applications
for medical diagnostic problems using decision tree
technology [44, 71, 24]. Besides the above mentioned
problems, decision trees suffer also from the following
deficiencies:

– Learning and classification is sensitive to missing
data [67] which is often the case in medical data.

– The generated decision rules typically include too
few attributes [63]. The explanation of decisions
is therefore poor and does not typically support
exact decisions of generated diagnostic rules.

To solve these two problems and to increase the re-
liability and the transparency of automatically gener-
ated classifiers a multistrategy learning approach has
recently gained much attention [54]. The approach of
combining decisions of several classifiers when solv-
ing new problems is analogous to decision making
in hospitals where the decisions for harder cases are
solved by a group of physicians rather than by one
physician alone. In [47] the results of different classi-
fiers were combined to make the final decision which
can be explained as a weighted sum of single decisions.
Physicians felt that with a multistrategy approach the
reliability and the comprehensibility of the results of
learning were much better than when using decision
trees only.

Temporal data abstraction represents a very young
technology, and concrete evaluation results of its per-
formance are just beginning to emerge. Assuming that
adequate levels of performance are attained, there is
every reason to expect that this technology will be fully
accepted by physicians, as it can be of great assis-
tance to them. Bringing the patient’s relevant history
to a form, and visually presenting it in an immediately
discernible fashion, that enables the direct application
of the higher level decision making performed by the
physician, represents invaluable assistance.

In our view, the awareness of the challenging new
fields of intelligent data analysis, data mining and
knowledge discovery in databases, and emerging new
technologies has been much larger in industry, finance,
and economy than in medicine. Hence, the purpose
of this paper is to increase the awareness of various
techniques and methods that are available for intelli-
gent data analysis in medicine, and to present some
case studies of their application. The paper presents
the state-of-the-art of selected intelligent data analy-
sis techniques (machine learning and temporal data ab-
straction) and evaluates their applicability in medical
diagnosis.

Despite the technical advantages of these technolo-
gies that may lead to more reliable diagnosis, the re-
viewed intelligent data analysis methods have not yet
been widely accepted in practice. Among the reasons
for such a slow acceptance of these new technologies
is the fact that the data analysis tools are not yet inte-
grated into the existing instrumentation, which would
make its use simpler and more natural. In addition,
the tools should be made more intuitive and equipped
with functional and visually attractive user interfaces.
Since for many algorithms there is a need to set cer-
tain numeric parameters in order to achieve best per-
formance, a method for automatic parameter setting
would be highly desirable. To make the preparation of
data easier for users, the intelligent data analysis sys-
tems should also be able to provide an interface to stan-
dard database software.
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