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Expert-Guided Subgroup Disovery:Methodology and AppliationDragan Gamberger dragan.gamberger�irb.hrRudjer Bo�skovi� Institute, Bijeni�ka 5410000 Zagreb, CroatiaNada Lavra� nada.lavra�ijs.siJo�zef Stefan Institute, Jamova 391000 Ljubljana, Slovenia AbstratThis paper presents an approah to expert-guided subgroup disovery. The main stepof the subgroup disovery proess, the indution of subgroup desriptions, is performed bya heuristi beam searh algorithm, using a novel parametrized de�nition of rule qualitywhih is analyzed in detail. The other important steps of the proposed subgroup disoveryproess are the detetion of statistially signi�ant properties of seleted subgroups andsubgroup visualization: statistially signi�ant properties are used to enrih the desrip-tions of indued subgroups, while the visualization shows subgroup properties in the formof distributions of the numbers of examples in the subgroups. The approah is illustratedby the results obtained for a medial problem of early detetion of patient risk groups.1. IntrodutionThis paper addresses the problem of subgroup disovery whih an be de�ned as: givena population of individuals and a property of those individuals we are interested in, �ndpopulation subgroups that are statistially `most interesting', e.g., are as large as possibleand have the most unusual statistial (distributional) harateristis with respet to theproperty of interest (Kl�osgen, 1996; Wrobel, 1997, 2001). Its main ontribution is a newmethodology supporting the proess of expert-guided subgroup disovery. Spei�ally, weintrodue a novel parametrized de�nition of rule quality used in a heuristi beam searhalgorithm, a rule subset seletion algorithm inorporating example weights, the detetion ofstatistially signi�ant properties of seleted subgroups, and a novel subgroup visualizationmethod. An in-depth analysis of the proposed quality measure is provided as well. Theproposed methodology has been applied to the medial problem of deteting and desribingpatient groups with high risk for artherosleroti oronary heart disease (CHD).1The paper organization is as follows. Algorithms for subgroup detetion and seletion,whih are the main ingredients of the expert-guided subgroup disovery methodology, aredesribed in Setion 2. Setion 3 presents: the oronary heart disease risk group detetionproblem, the disovered patient risk groups, their statistial haraterization, visualiza-tion, medial interpretation and evaluation, inluding a disussion on the expert's role in1. Algorithms for subgroup detetion and seletion have been implemented in the on-line Data Mining Server(Gamberger & �Smu, 2001), publily available at http://dms.irb.hr whih an be tested in domainswith up to 250 examples. A more sophistiated implementation of the algorithms is not available forpubli use.2002 AI Aess Foundation and Morgan Kaufmann Publishers. All rights reserved.



Gamberger & Lavra�the subgroup disovery proess. Setion 4 provides an in-depth analysis of the proposedrule quality measure for subgroup disovery inluding an experimental omparison with aseleted ost-based quality measure. Finally, Setion 5 provides links to the related work.2. Subgroup Disovery: Rule Indution and SeletionThis setion desribes the two main steps of the overall subgroup disovery proess: indu-tion and seletion of interesting subgroups. These two steps, as well as the whole desriptiveindution proess assume ative expert involvement.2.1 The Task of Expert-Guided Subgroup DisoveryThe task of expert-guided subgroup disovery addressed in this work di�ers slightly fromthe subgroup disovery task de�ned in Setion 1 and proposed by (Kl�osgen, 1996; Wrobel,1997). Instead of de�ning an optimal measure for automated subgroup searh and seletion,here the goal is to support the expert in performing exible and e�etive searh of a broadrange of optimal solutions. As a onsequene, the deision of whih subgroups will beseleted to form the �nal solution is left to the expert. The task of the subgroup disoveryalgorithm is to enable the detetion of rules desribing potentially optimal subgroups, whihare haraterized by the property that they are orret for many target lass ases (patientswith oronary heart disease, in the example domain used in this work) and inorret forall, or most of, non-target lass ases (healthy subjets). Target lass ases inluded intoa subgroup are alled true positives while non-target lass ases inorretly inluded into asubgroup are alled false positives.The partiular expert-guided subgroup disovery task addressed in this work assumesthe ollaboration of the expert and the data analyst in repeatedly running a subgroupdisovery algorithm with a goal of �nding rules desribing population subgroups whih:� have suÆiently large overage,� have a positive bias towards target lass ase overage (have a suÆiently large truepositive/false positive ratio)� are suÆiently diverse for deteting most of the target population, and� ful�ll other experts' subjetive measures of aeptability: understandability, simpliityand ationability.In eah iteration, the task of the subgroup disovery algorithm is to suggest one ormore potentially optimal solutions. Setion 2.2 desribes a heuristi searh algorithm SD,whih an be used to onstrut many rules that are optimal with respet to an expertseleted generalization parameter. Sine many of the indued rules an be very similar,both in terms of their overage and the seleted features, the RSS algorithm desribed inSetion 2.3 an be used to selet a small number of distint rules that are o�ered to the expertas potentially optimal solutions. Alternatively, subgroup disovery an be implementedwithin a `weighted' overing algorithm DMS, as is the ase in the publily available DataMining Server (Gamberger & �Smu, 2001), whih generates up to three best subgroups inevery iteration. 502



Expert-Guided Subgroup Disovery2.2 The Subgroup Disovery AlgorithmThe goal of the subgroup disovery algorithm SD, outlined in Figure 1, is to searh for rulesthat maximize qg = TPFP+g , where TP are true positives, FP are false positives, and g is ageneralization parameter. High quality rules over many target lass examples and a lownumber of non-target examples. The number of tolerated non-target lass ases, relative tothe number of overed target lass ases, is determined by parameter g. For low g (g � 1),indued rules will have high spei�ity (low false alarm rate) sine overing of every singlenon-target lass example is made relatively very `expensive'. On the other hand, by seletinga high g value (g > 10 for small domains), more general rules will be generated, overingalso non-target lass instanes.Algorithm SD: Subgroup DisoveryInput: E = P [N (E training set, jEj training set size,P positive (target lass) examples, N negative (non-target lass) examples)L set of all de�ned features (attribute values), l 2 LParameter: g (generalization parameter, 0:1 < g, default value 1)min support (minimal support for rule aeptane)beam width (maximal number of rules in Beam and New Beam)Output: S = fTargetClass Condg (set of rules formed of beam width best onditions Cond)(1) for all rules in Beam and New Beam (i = 1 to beam width) doinitialize ondition part of the rule to be empty, Cond(i) fginitialize rule quality, qg(i) 0(2) while there are improvements in Beam do(3) for all rules in Beam (i = 1 to beam width) do(4) for all l 2 L do(5) form a new rule by forming a new ondition as a onjuntion of theondition from Beam and feature l, Cond(i) Cond(i) ^ l(6) ompute the quality of a new rule as qg = TPFP+g(7) if TPjEj � min support and if qg is larger than any qg(i) in New Beamand if the new rule is relevant do(8) replae the worst rule in New Beam with the new rule andreorder the rules in New Beam with respet to their quality(9) end for features(10) end for rules from Beam(11) Beam New Beam(12) end whileFigure 1: Heuristi beam searh rule onstrution algorithm for subgroup disovery.Varying the value of g enables the expert to guide subgroup disovery in the TP=FPspae, in whih FP (plotted on the X-axis) needs to be minimized, and TP (plotted on theY -axis) needs to be maximized. The TP=FP spae is similar to the ROC (Reeiver Op-erating Charateristi) spae (Provost & Fawett, 2001). The omparison of the ROC andTP=FP spae and the gq heuristi are analyzed in detail in Setions 2.4 and 4, respetively.503



Gamberger & Lavra�Algorithm SD takes as its input the omplete training set E and the feature set L,where features l 2 L are logial onditions onstruted from attribute values desribing theexamples in E. For disrete (ategorial) attributes, features have the form Attribute =value or Attribute 6= value, for numerial attributes they have the form Attribute > valueor Attribute < value. To formalize feature onstrution, let values vix (x = 1::kip) denotethe kip di�erent values of attribute Ai that appear in the positive examples and wiy (y =1::kin) the kin di�erent values of Ai appearing in the negative examples. A set of featuresL is onstruted as follows:� For disrete attributes Ai, features of the form Ai = vix and Ai 6= wiy are generated.� For ontinuous attributes Ai, similar to Fayyad and Irani (1992), features of the formAi � (vix + wiy)=2 are reated for all neighboring value pairs (vix; wiy), and featuresAi > (vix + wiy)=2 for all neighboring pairs (wiy; vix).� For integer valued attributes Ai, features are generated as if Ai were both disreteand ontinuous, resulting in features of four di�erent forms: Ai � (vix + wiy)=2,Ai > (vix + wiy)=2, Ai = vix, and Ai 6= wiy.There is no theoretial upper value for the user-re�ned g parameter, but in pratie thesuggested upper limit should not exeed the number of training examples. For instane,suggested g values in the Data Mining Server are in the range between 0.1 and 100, foranalysing data sets of up to 250 examples. The hoie of g should be adjusted both to thesize of the data set and to the proportion of positive examples in the set.Algorithm SD has two additional parameters whih are typially not adjusted by theuser. The �rst is min support (default value is pP=E, where P is the number of targetlass examples in E) whih indiretly de�nes the minimal number of target lass exampleswhih must be overed by every subgroup. The seond is beam width (default value is 20)whih de�nes the number of solutions kept in eah iteration. The output of the algorithmis set S of beam width di�erent rules with highest qg values. The rules have the form ofonjuntions of features from L.The algorithm initializes all the rules in Beam and New beam by empty rule onditions.Their quality values qg(i) are set to zero (step 1). Rule initialization is followed by an in�niteloop (steps 2{12) that stops when, for all rules in the beam, it is no longer possible to furtherimprove their quality. Rules an be improved only by onjuntively adding features fromL. After the �rst iteration, a rule ondition onsists of a single feature, after the seonditeration up to two features, and so forth. The searh is systemati in the sense that forall rules in the beam (step 3) all features from L (step 4) are tested in eah iteration. Forevery new rule, onstruted by onjuntively adding a feature to rule body (step 5) qualityqg is omputed (step 6). If the support of the new rule is greater than min support andif its quality qg is greater than the quality of any rule in New beam, the worst rule inNew beam is replaed by the new rule. The rules are reordered in New beam aording totheir quality qg. At the end of eah iteration, New beam is opied into Beam (step 11).When the algorithm terminates, the �rst rule in Beam is the rule with maximum qg.A neessary ondition (in step 7) for a rule to be inluded in New beam is that it mustbe relevant. The new rule is irrelevant if there exists a rule R in New beam suh that truepositives of the new rule are a subset of true positives of R and false positives of the new rule504



Expert-Guided Subgroup Disoveryare a superset of false positives of R. A detailed analysis of relevane, presented by Lavra�,Gamberger, and Turney (1998), is out of the main sope of this paper. After the new rule isinluded in New beam it may happen that some of the existing rules in New beam beomeirrelevant with respet to this new rule. Suh rules are eliminated from New beam duringits reordering (in step 8). The testing of relevane ensures that New beam ontains onlydi�erent and relevant rules.In Algorithm SD, rule quality measure qg serves two purposes: �rst, rule evaluation, andseond, evaluation of features and their onjuntions with high potential for the onstrutionof high quality rules in subsequent iterations. The analysis of this quality measure inSetion 4 shows that for the �rst purpose, a measure assigning di�erent osts to falsepositives and false negatives ould perform equally well, but for the purpose of guiding thesearh the qg measure is advantageous.2.3 Rule Subset SeletionThis setion desribes how to redue the number of generated rules to a relatively smallnumber of diverse rules. Reduing the rule set is desirable beause expeting experts toevaluate a large set of rules is unfeasible, and seond, experiments demonstrate that thereare subsets of very similar rules whih use almost the same attribute values and have similarpredition properties.The weighted overing approah proposed for on�rmation rule subset seletion (Gam-berger & Lavra�, 2000) de�nes diverse rules as those that over diverse sets of target lassexamples. The approah, implemented in Algorithm RSS outlined in Figure 2, an not guar-antee statistial independene of the seleted rules, but it ensures the diversity of generatedsubsets.Algorithm RSS: Rule Subset SeletionInput: S set of rules for the target lassP target lass examplesParameter: number (required number of seleted rules in output set SS)Output: SS set of relatively independent rules for the target lass(1) initialize SS  fg (empty set of seleted rules)(2) for every e 2 P do (e) 1(3) repeat number times(4) selet from S the rule with the highest weight P 1=(e) where summation isover the set P 0 � P of target lass examples overed by the rule(5) for every e 2 P 0 overed by the seleted ruledo (e) (e) + 1(6) eliminate the seleted rule from S(7) add the seleted rule into set SS(8) end repeat Figure 2: Heuristi rule subset seletion algorithm.505



Gamberger & Lavra�Input to Algorithm RSS are the set of all target lass examples P and the set of rulesS. Its output is a redued set of rules SS, SS � S. The user adjustable parameter numberdetermines how many rules will be seleted for inlusion in output set SS. For every examplee 2 P there is a ounter (e). Initially, the output set of seleted rules is empty (step 1)and all ounter values are set to 1 (step 2). Next, in eah iteration of the loop (steps 3to 8), one rule is added to the output set (step 7). From set S, the rule with the highestweight value is seleted. For eah rule, weight is omputed so that 1=(e) values are addedfor all target lass examples overed by this rule (step 4). After rule seletion, the ruleis eliminated from set S (step 6) and (e) values for all target lass examples overed bythe seleted rule are inremented by 1 (step 5). This is the entral part of the algorithmwhih ensures that in the �rst iteration all target lass examples ontribute the same value1=(e) = 1 to the weight, while in the following iterations the ontributions of examples areinverse proportional to their overage by previously seleted rules. In this way the examplesalready overed by one or more seleted rules derease their weights while rules overingmany yet unovered target lass examples whose weights have not been dereased will havea greater hane to be seleted in the following iterations.In the publily available Data Mining Server, RSS is implemented in an outer loop forSD. Figure 3 gives the pseudo ode of algorithm DMS. In its inner loop, DMS alls SD andselets from its beam the single best rule to be inluded into the output set SS. To enableSD to indue a di�erent solution at eah iteration, example weights (e) are introdued andused in the quality measure whih is de�ned as follows:qg = PTP 1(e)FP + g :This is the same quality measure as in SD exept that the weights of true positive examplesare not onstant and equal to 1 but de�ned by expression 1(e) , hanging from iteration toiteration.The main reason for the desribed implementation is to ensure the diversity of induedsubgroups even though, beause of the short exeution time limit on the publily availableserver, a low beam width parameter value in Algorithm SD had to be set (the defaultvalue is 20). Despite the favorable diversity of rules ahieved through Algorithm DMS, theapproah has also some drawbaks. The �rst drawbak is that the same rule an be detetedin di�erent iterations of Algorithm DMS, despite of the hanges in the (e) values. The moreimportant drawbak is that heuristi searh with a small beam width value may preventthe detetion of some good quality subgroups. Therefore during exploratory appliations,applying a single SD exeution with a large beam width followed by a single run of RSSappears to be a better approah.2.4 Subgroup Searh and Evaluation in the ROC and TP/FP SpaeThe goal of this setion is to larify the relation between the ROC spae whih is usuallyused for evaluating lassi�er performane, and the TP=FP spae whih is being searhedby the qg heuristi in the SD algorithm.Evaluation of indued subgroups in the ROC spae (ROC: Reeiver Operating Char-ateristi, Provost & Fawett, 2001) shows their performane in terms of TPr and FPr,506



Expert-Guided Subgroup Disovery
Algorithm DMS: Data Mining Server subgroup onstrutionInput: E = P [N (E training set, jEj training set size,P positive (target lass) examples,N negative (non-target lass) examples)L set of all de�ned features (attribute values), l 2 LParameter: number (required number of seleted rulesin output set SS)g (generalization parameter, 0:1 < g < 100, default value 1)min support (minimal support for rule aeptane)beam width (number of rules in the beam)Output: SS set of relatively independent rules for the target lass(1) initialize SS  fg (empty set of seleted rules)(2) for every e 2 P do (e) 1(3) repeat number times(4) all Algorithm SD to onstrut a rule with maximalquality qg = PTP 1(e)FP+g(5) for every e 2 P 0 overed by the onstruted ruledo (e) (e) + 1(6) add the onstruted rule into set SS(7) end repeatFigure 3: Iterative subgroup onstrution in the Data Mining Server.where TPr is the sensitivity of a lassi�er measuring the fration of positive ases thatare lassi�ed as positive, and FPr is the false alarm measuring the fration of inorretlylassi�ed negative ases: TPr = TPTP+FN = TPPos , and FPr = FPTN+FP = FPNeg . A point in theROC spae shows lassi�er performane in terms of false alarm rate FPr (plotted on theX-axis) that should be as low as possible, and sensitivity TPr (plotted on the Y -axis) thatshould be as high as possible (see Figure 5 in Setion 3.2).The ROC spae is appropriate for measuring the suess of subgroup disovery, sinesubgroups whose TPr=FPr tradeo� is lose to the diagonal an be disarded as uninterest-ing. Conversely, interesting rules/subgroups are those suÆiently distant from the diagonal.Those rules whih are most distant from the diagonal de�ne the points in the ROC spaefrom whih a onvex hull is onstruted. The area under the ROC urve de�ned by sub-groups with the best TPr=FPr tradeo� an be used as a quality measure for omparingthe suess of di�erent learners or subgroup miners. In subgroup onstrution, the dataanalyst an try to ahieve the desired TPr=FPr tradeo� by building rules using di�erentdata mining algorithms, by di�erent parameter settings of a seleted data mining algorithmor by applying a ost-sensitive data mining algorithm that takes into the aount di�erentmislassi�ation osts.The qg measure in the SD algorithm that needs to be maximized, tries to �nd subgroupsthat are as far as possible from the diagonal of the ROC spae in the direion of the leftupper orner (with TPr equal to 100% and FPr equal to 0%). Note, however, that theatual omputation, as implemented in Algorithm SD, is not performed in terms of TPr and507



Gamberger & Lavra�FPr, as assumed in the ROC analysis, but rather in terms of TP and FP in the so-alledTP=FP spae. The reason is the improved omputational eÆieny of omputing the qgvalue whih is used as a searh heuristi for omparing the quality of rules for a given, �xeddomain. For a �xed domain, the TP=FP spae is as appropriate as the ROC spae: theROC spae is namely equivalent to the normalized TP=FP spae where Pos and Neg arenormalization onstants for Y and X axes, respetively. The TP=FP spae and the ROCspae are illustrated in Setion 3.2 by Figures 4 and 5, respetively.3. The Desriptive Indution ProessThe indution of subgroups, desribed in Setion 2.2, represents the main step of the pro-posed desriptive indution proess. This step orresponds to the data mining step of thestandard proess of knowledge disovery in databases (KDD). The overall desriptive indu-tion proess, proposed in this paper, is omparable to the standard KDD proess (Fayyad,Piatetsky-Shapiro, & Smyth, 1996), with some partiularities of the task of subgroup dis-overy.The proposed expert-guided subgroup disovery proess onsists of the following steps:1. problem understanding2. data understanding and preparation3. subgroup detetion4. subgroup subset seletion5. statistial haraterization of subgroups6. subgroup visualization7. subgroup interpretation8. subgroup evaluationSetion 3.1, illustrating steps 1 and 2, presents a medial problem used as a ase studyfor applying the proposed desriptive indution methodology. Tools for supporting sub-group detetion and seletion in steps 3 and 4 were desribed in detail in Setions 2.2 and2.3, while the results of expert-guided subgroup detetion and seletion are outlined in Se-tion 3.2. Methods and results of steps 5{8 for this domain are outlined in Setions 3.3{3.6,respetively.The proposed desriptive indution proess is iterative and interative. It is iterative,sine many steps may need to be repeated before a satisfatory solution is found. It is alsointerative, assuming expert's involvement in most of the phases of the proposed desriptiveindution proess. The expert's role in the patient risk group detetion appliation isdesribed in Setion 3.7. 508



Expert-Guided Subgroup Disovery3.1 The Problem of Patient Risk Group DetetionEarly detetion of artherosleroti oronary heart disease (CHD) is an important and dif-�ult medial problem. CHD risk fators inlude artherosleroti attributes, living habits,hemostati fators, blood pressure, and metaboli fators (Goldman et al., 1996). Theirsreening is performed in general pratie by data olletion in three di�erent stages.A Colleting anamnesti information and physial examination results, inluding risk fa-tors like age, positive family history, weight, height, igarette smoking, alohol on-sumption, blood pressure, and previous heart and vasular diseases.B Colleting results of laboratory tests, inluding information about risk fators like lipidpro�le, gluose tolerane, and trombogeni fators.C Colleting ECG at rest test results, inluding measurements of heart rate, left ven-triular hypertrophy, ST segment depression, ardia arrhythmias and ondutiondisturbanes.Our goal was to onstrut at least one relevant and interesting subgroup, alled a patternin the rest of the work, for eah stage, A, B, and C, respetively.A database with 238 patients representing typial medial pratie in CHD diagnosis,olleted at the Institute for Cardiovasular Prevention and Rehabilitation, Zagreb, Croatia,was used for subgroup disovery. The database is in no respet a good epidemiologialCHD database reeting atual CHD ourrene in a general population, sine about 50%of gathered patient reords represent CHD patients. Nevertheless, the database is veryvaluable sine it inludes reords of di�erent types of the disease. Moreover, the inludednegative ases (patients who do not have CHD) are not randomly seleted persons butindividuals with some subjetive problems or those onsidered by general pratitioners aspotential CHD patients, and hene sent for further investigations to the Institute. Thisbiased data set is appropriate for CHD risk group disovery, but it is inappropriate formeasuring the suess of CHD risk detetion and for subgroup performane estimation ingeneral medial pratie.3.2 Results of Expert-Guided Subgroup Detetion and SeletionThe proess of expert-guided subgroup disovery was performed as follows. For every datastage A, B and C, the DMS algorithm was run for values g in the range 0.5 to 100, and a�xed number of seleted output rules equal to 3. The rules indued in this iterative proesswere shown to the expert for seletion and interpretation. The inspetion of 15{20 rules foreah data stage triggered further experiments. Conrete suggestions of the medial expertinvolved in this study were to limit the number of features in the rule body and to tryto avoid the generation of rules whose features would involve expensive and/or unreliablelaboratory tests. Consequently, we have performed the further experiments by intentionallylimiting the feature spae and the number of iterations in the main loop of the SD algorithm(steps 2-12 of Algorithm SD).In this iterative proess, the expert has seleted �ve interesting CHD risk groups. Table 1shows the indued subgroups, together with the values of g and the rule signi�ane. Inthe subgroup disovery terminology proposed in this paper, the features appearing in the509



Gamberger & Lavra�onditions of rules desribing the subgroups are alled the prinipal fators. The desribediterative proess was suessful for data at stages B and C, but it turned out that anamnestidata on its own (stage A data) is not informative enough for induing subgroups, i.e., itfailed to ful�l the expert's riteria of interestingness. Only after engineering the domain, byseparating male and female patients, were interesting subgroups disovered. See Setion 3.7for more details on the expert's involvement in this subgroup disovery proess.Expert Seleted Subgroups g SigA1 CHD  positive family history AND 14 95%age over 46 yearA2 CHD  body mass index over 25 kgm�2 AND 8 99%age over 63 yearsB1 CHD  total holesterol over 6.1 mmolL�1 AND 10 99.9%age over 53 years ANDbody mass index below 30 kgm�2B2 CHD  total holesterol over 5.6 mmolL�1 AND 12 99.9%�brinogen over 3.7 gL�1 ANDbody mass index below 30 kgm�2C1 CHD  left ventriular hypertrophy 10 99.9%Table 1: Indued subgroups in the form of rules. Rule onditions are onjuntions of prin-ipal fators. Subgroup A1 is for male patients, subgroup A2 for female patients,while subgroups B1, B2, and C1 are for male and female patients. The subgroupsare indued from di�erent attribute subsets with orresponding g parameter valuesgiven in olumn g. The last olumn Sig ontains information about the signi�aneof the rules omputed by the �2 test.Separately for eah data stage, we have investigated whih of the indued rules are thebest in terms of the ROC spae, i.e., whih of them are used to de�ne the ROC onvex hull.At stage B, for instane, seven rules are on the onvex hull shown in Figures 4 and 5 forthe TP=FP and the ROC spae, respetively. Two of these rules, X1 and X2, indiatedin the �gures, are listed in Table 2. Notie that the expert-seleted subgroups B1 and B2are signi�ant, but are not among those lying on the onvex hull. The reason for seletingexatly those two rules at stage B are their simpliity (onsisting of three features only),their generality (overing relatively many positive ases) and the fat that the used featuresare, from the medial point of view, inexpensive laboratory tests.3.3 Statistial Charaterization of SubgroupsThe next step in the proposed desriptive indution proess starts from the disoveredsubgroups. In this step, statistial di�erenes in distributions are omputed for two pop-ulations, the target and the referene population. The target population onsists of truepositive ase (CHD patients inluded into the analyzed subgroup), whereas the referenepopulation are all available non-target lass examples (all the healthy subjets).510



Expert-Guided Subgroup Disovery
Best Indued Subgroups g SigX1 CHD  age over 61 years AND 4 99.9%tryglierides below 1.85 mmolL�1 ANDhigh density lipoprotein below 1.25 mmolL�1X2 CHD  body mass index over 25 AND 16 99.9%high density lipoprotein below 1.25 mmolL�1 ANDuri aid below 360 mmolL�1 ANDgluose below 7 mmolL�1 AND�brinogen over 3.7 gL�1Table 2: Two of the best indued subgroups indued for stage B. Their position in theTP=FP and the ROC spae are marked in Figures 4 and 5, respetively.

Figure 4: The TP=FP spae presenting theonvex hull of subgroups induedusing the quality measure qg =TP=(FP + g) at data stage B. La-bels B1 and B2 denote positionsof subgroups seleted by the med-ial expert, and X1 and X2 twoof the seven subgroups forming theTP=FP onvex hull.
Figure 5: The same subgroups as in Fig-ure 4 shown in the ROC spae in-stead of the TP=FP spae. Theequivalene of these two spaesan be easily notied. In theROC spae a thin line onnetingpoints (0,0) and (100,100) repre-sents rule positions with signi�-ane equal zero.Statistial di�erenes in distributions for all the desriptors (attributes) between thesetwo populations is tested using the �2 test with 95% on�dene stage (p = 0:05). For thispurpose numerial attributes have been partitioned in up to 30 intervals so that in everyinterval there are at least 5 instanes. Among the attributes with signi�antly di�erentdistributions there are always those that form the features desribing the subgroups (theprinipal fators), but usually there are also other attributes with signi�antly di�erent valuedistributions. These attributes are alled supporting attributes, and the features formed oftheir values that are harateristi for the disovered subgroups are alled supporting fators.511



Gamberger & Lavra�Supporting fators are very important to ahieve pattern desriptions that are reason-ably omplete and aeptable for medial pratie, as medial experts dislike short rulesand prefer rules inluding as muh supportive evidene as possible (Kononenko, 1993).In this work, the role of statistial analysis is to detet meaningful supporting fators,whereas the deision whether they will be used to support user's on�dene in the subgroupdesription is left to the expert. In the CHD appliation the expert has deided whetherthe proposed fators are indeed interesting, how reliable they are or how easily they an bemeasured in pratie. In Table 3, expert seleted supporting fators are listed next to theindividual CHD risk groups, eah desribed by a list of prinipal fators.Prinipal Fators Supporting FatorsA1 positive family history psyhosoial stressage over 46 year igarette smokinghypertensionoverweightA2 body mass index over 25 kgm�2 positive family historyage over 63 years hypertensionslightly inreased LDL holesterolnormal but dereased HDL holesterolB1 total holesterol over 6.1 mmolL�1 inreased triglyerides valueage over 53 yearsbody mass index below 30 kgm�2B2 total holesterol over 5.6 mmolL�1 positive family history�brinogen over 3.7 mmolL�1body mass index below 30 kgm�2C1 left ventriular hypertrophy positive family historyhypertensiondiabetes mellitusTable 3: Indued subgroup desriptions (prinipal fators) and their statistial harateri-zations (supporting fators).3.4 Subgroup VisualizationA novel visualization method an be used to visualize the output of any subgroup disoveryalgorithm, provided that the output has the form of rules with a target lass in theironsequent. It an also be used as a method for visualizing standard lassi�ation rules.Subgroup visualization, as desribed in this setion, allows us to ompare distributionsof di�erent subgroups. The approah assumes the existene of at least one numeri (orordered disrete) attribute of expert's interest for subgroup analysis. The seleted attributeis plotted on the X-axis of the diagram. The Y -axis represents a lass, or more preisely,the number of instanes of a given lass. Both diretions of the Y -axis (Y + and Y �) areused to indiate the number of instanes. In Figure 6, for instane, the X-axis representsage, the Y +-axis denotes lass oronary heart disease (CHD) and Y � denotes lass `healthy'512



Expert-Guided Subgroup Disovery(non-CHD). Out of four graphs at the Y + side, three represent indued subgroups (A1, A2and C1) of CHD patients, and the fourth shows the age distribution of the entire populationof CHD (all CHD) patients. The graphs at the Y � side show the distribution of non-CHD(all healthy) patients in the training set and the distribution of healthy subjets inludedinto the subgroup A2 (dashed line).

Figure 6: Distributions of the numbers of CHD patients (all CHD) and healthy subjets(all healthy) in terms of age (in years). Graphs A1, A2, and C1 represent thedistributions of CHD patients belonging to the orresponding subgroups. Thedashed line represents healthy subjets inluded in subgroup A2.

Figure 7: Distributions of the numbers of CHD patients (all CHD) and healthy subjets(all healthy), as well as the distributions of patients for subgroups B1 and B2 interms of age (in years). The dashed line represents healthy subjets inluded insubgroup B1.On purpose, the graphs of subgroups A1 and C1 in Figure 6 show only the overageof positive ases (CHD patients), and in Figure 7 the graph of subgroup B2 shows only513



Gamberger & Lavra�

Figure 8: Distributions of all CHD patients and those desribed by patterns A1 and B2, aswell as all healthy subjets and those inluded into pattern B2 (dashed line) interms of total holesterol value in mmolL�1.the overage of positive ases, whereas the graphs of A2 in Figure 6 and B1 in Figure 7indiate that the desriptions of subgroups over positive ases (CHD patients) as well assome negative ases (healthy individuals). Exept for the orret visualization of subgroupsA2 and B1 and of the entire CHD and non-CHD distribution, Figures 6 and 7 have beensimpli�ed in order to enable a better understanding of the visualization method, by showingjust the overage of positive ases.In medial domains we typially use the Y + side to represent the number of positiveases (CHD patients, in this paper) in order to reveal properties of indued patterns forsubgroups of these patients. On the other hand, the Y � side is reserved to reveal propertiesof these same patterns (or other patterns) for the negative ases (patients without CHD).One of the advantages of using Y + and Y � as proposed above is that in binary lassi�ationproblems the omparison of the area under the graph of a subgroup and the graph of theentire population visualizes the frations of TPPos = TPTP+FN at the Y + side (sensitivity TPr),and FPNeg = FPTN+FP at the Y � side (false alarm rate FPr), where Pos and Neg stand for thenumbers of positive and negative ases in the entire population, respetively. For instane,in the visualization of subgroup B1 in Figure 7 the area under the dashed line on the Y �side represents the numbers of mislassi�ed training instanes of subgroup B1. In this way,the sensitivity and false alarm rate an be estimated for pattern B1 from Figure 7. Thesame information for pattern B2 an be found in Figure 8, showing subgroups A1 and B2in terms of attribute `total holesterol value'.The proposed visualization method an be adapted to visualize subgroups also in termsof value distributions of disrete/nominal attributes. An approah to suh visualizationis presented in Figure 9. However, due to bar hart representation, it is more diÆult toompare several subgroups in one visualization.In general, it is not neessary that Y + and Y � denote two opposite lasses. If appro-priate, they may denote any two lasses, or even any two di�erent attribute values, whihthe expert would like to ompare. 514



Expert-Guided Subgroup Disovery

Figure 9: Distribution of CHD patients and healthy subjets with respet to stress values(low, high, and very high) for the entire population and the �ve indued patterns.

Figure 10: Distribution of CHD patients and healthy subjets with respet to exerise ECGST segment depression in millimeters (1mm orresponds to 0.1 mV). Large dif-ferene between total healthy and ill populations an be notied, but di�erenesamong patterns are very small. Patterns A1 and C1 are seleted as extremeases. The dashed line presents healthy persons inorretly desribed by pat-tern C13.5 Subgroup Interpretation through VisualizationSubgroup visualization is very valuable for expert interpretation of subgroup disovery re-sults. From Figures 6 and 7 it an be seen that there is no signi�ant di�erene between515



Gamberger & Lavra�CHD patients and healthy subjets regarding their age, but that there are signi�ant dif-ferenes among the deteted patterns. Figure 8 illustrates a similar e�et for the totalholesterol values although it is known that total holesterol is an important risk fator forthe CHD disease. This observation shows that the problem of CHD risk group detetion antypially not be solved by onsidering single features and demonstrates the appropriatenessof the suggested approah whih tries to generate subgroup desriptions whih are a logialonjuntion of a few orrelated features.Figure 10 is also interesting, sine it is very di�erent from other �gures. Notie thatexerise ECG ST segment depression was not used as an attribute in the training data(whih ontained only attributes that are available at stages A, B and C); exerise ECG STsegment depression, long term ECG reording and ehohardiography are not available forearly risk group detetion sine they an be olleted/measured only in speialized medialinstitutions. Figure 10 learly demonstrates signi�ant di�erenes between all CHD and allhealthy subjets in terms of exerise ECG ST segment depression values, demonstratingthat this measurement, if available, is an exellent disease indiator. But it also shows that,although it is known that patterns A1 and C1 over di�erent disease subpopulations, theybehave very similarly in terms of the exerise ECG ST segment depression property.3.6 Subgroup EvaluationIn order to evaluate the disovered risk groups, the medial expert has tested the induedsubgroup patterns on an independent set of 70 people (50 CHD patients and 20 non-CHDases from the same hospital). The results for these patients, summarized in Table 4, showthat the patterns are suessful in deteting CHD patients. About 90% of CHD patientswere inluded into at least one of the �ve patterns. The deteted sensitivity values (TPr)for patterns A1, B2, and C1 are signi�antly higher than the values omputed on the setof patients used for subgroup disovery. For the other two patterns the values do not di�ersigni�antly. Note that the auray values are relatively high, despite the relatively highfalse positive rate (FPr): a lower FPr ould have been ahieved by seleting lower valuesof the generalization parameter g, at a ost of deteting subgroups with lower overage ofpositive ases. Training set Test setTPr FP r Auray TPr FPr AurayA1 47.5% 26.8% 59.4% 84.8% 77.8% 80.0%A2 48.4% 6.7% 81.2% 41.2% 27.3% 70.0%B1 28.8% 9.4% 72.7% 36.0% 20.0% 81.8%B2 32.4% 12.6% 69.2% 42.0% 15.0% 87.5%C1 23.4% 5.5% 78.8% 82.0% 40.0% 83.7%Table 4: Summary of results obtained on the training set and on an independent set of70 persons (50 CHD patients and 20 non-CHD ases from the same hospital),measured in terms of TPr, FPr and Auray.516



Expert-Guided Subgroup Disovery3.7 The Expert's Role in Subgroup DisoveryThe CHD ase study illustrates that expert-guided indution is an iterative proess in whihthe expert an hange the requested generality of the indued subgroups and the subset ofattributes (features) that are made available for rule onstrution. In this way it is possibleto indue di�erent patterns (subgroups) from the same data set. The seletion of one or moresubgroups representing the �nal solution is left to the expert; the deision depends both onrule predition properties (like the number of true positives and the tolerated number offalse positives), as well as subjetive properties like the understandability, unexpetednessand ationability of indued subgroup desriptions (Silbershatz & Tuzhilin, 1995), whihdepend on the features used in the onditions of indued rules. In the appliation desribedin this paper, the main subjetive aeptability riteria were understandability, simpliityand ationability.Partitioning the CHD risk group problem into three data stages A{C was ompletelybased on the expert's understanding of the typial diagnosti proess. From the mahinelearning point of view this a�ets the seletion of subsets of attributes that are used indi�erent experiments. Moreover, at data stage A the partitioning of the example set hasbeen used as well. At this data stage there are only a few attributes that ould have beenused for rule indution. The expert's understanding of the domain suggested that the CHDpopulation be partitioned into two subpopulations based on the sex of patients, making itsigni�antly easer to indue interesting subgroups. This partitioning resulted in patternsA1 and A2.Alternatively, partitioning an be performed also in the phase of performing statistialharaterization of disovered subgroups, by further splitting the deteted subgroups inseveral parts (e.g., di�erentiating between male and female patients that are true positiveases for the subgroup) and then omparing attribute value distributions for these parts.Any signi�ant di�erene in this distribution may be potentially interesting as part of thesubgroup desription. As a basis for subgroup partitioning one may use either some detetedsupporting risk fator or any other attribute or attribute ombination whih is potentiallyinteresting based on the existing expert knowledge.There has been some e�ort devoted also to automating the proess of partitioning ex-ample sets by a method of unsupervised learning, but its presentation is out of the mainsope of this work (�Smu, Gamberger, & Krsta�i�, 2001).From the methodologial point of view it is interesting to notie that the expert appre-iated the indued subgroups overing many target lass ases (with true positive rate ofat least 20%) and with false positive rate as low as possible, with the intention to keep itbelow 10%. But in seleting a rule, its predition quality has not been the most importantfator. The neessary ondition for seleting a rule was that the expert was able to reognizeonnetions among features building the rule that are medially reasonable. In this sense,short rules are signi�antly more intuitive; it an be notied from Table 1 that all rulesseleted by the expert have at most three features de�ning the prinipal risk fators. Thefat that the expert did not selet subgroups with an optimal TP=FP ratio is illustrated byFigures 16{18 in Setion 4.2, whih show the positions of the patterns A1{C1 in the TP=FPspae and the TP=FP onvex hulls indued for data stages A{C, onneting points with517



Gamberger & Lavra�the optimal overage properties. It an be notied that none of the expert seleted patternsis lying on the TP=FP onvex hull but the seleted patterns are lose to the onvex hull.4. Analysis of the Proposed Rule Quality Measure Used in HeuristiSearhIt is well known from the ROC analysis, that in order to ahieve the best results, thedisovered rules should be as lose as possible to the top-left orner of the ROC spae. Thismeans that in the TPr=FPr tradeo�, TPr should be as large as possible, and FPr as smallas possible. Similarly, in the TP=FP spae, TP should be as large as possible, and FP assmall as possible.In this work the quality measure qg = TP=(FP + g) using generalization parameterg has been de�ned. This setion explains why this quality measure has been seleted, inomparison with other more intuitive quality measure like a ost-based measure q involving`ost' parameter .4.1 Comparison of the qg and q HeuristisOur experiene in di�erent medial appliations indiates that intuitions like \how expensiveis every FP predition in terms of additional TP preditions made by a rule" are usefulfor understanding the problem of direting the searh in the TP=FP spae. Suppose thatthe de�nition of ost parameter  is based on the following argument: \For every additionalFP , the rule should over more than  additional TP examples in order to be better."Based on suh reasoning, it is possible to de�ne a quality measure q, using the followingTP=FP tradeo�: q = TP �  � FP:Quality measure q is easy to use beause of the intuitive interpretation of parameter . Ithas also a nie property when used for subgroup disovery: by hanging the  value we anmove in the TP=FP spae and selet the optimal point based on parameter .In Algorithm SD, the quality measure qg, using a di�erent TP=FP tradeo� is used:qg = TP=(FP + g), where g is the generalization parameter.If a subgroup disovery algorithm employs exhaustive searh (or if all points in theTP=FP spae are known in advane) then the two measures qg and q are equivalent inthe sense that every optimal solution lying on the onvex hull an be deteted by usingany of the two heuristis; only the values that must be seleted for parameters g and  aredi�erent. In this ase, q might be even better beause its interpretation is more intuitive.However, sine Algorithm SD is a heuristi beam searh algorithm, the situation isdi�erent. Subgroup disovery is an iterative proess, performing one or more iterations(typially 2{5) until good rules are onstruted by forming onjuntions of features in therule body. In this proess, a rule quality measure is used for rule seletion (for whihthe two measures qg and q are equivalent) as well as for the seletion of features and theironjuntions that have high potential for the onstrution of high quality rules in subsequentiterations; for this use, rule quality measure qg is better than q. Let us explain why.Suppose that we have a point (a rule) R in the TP=FP spae, where TP and FP areits true and false positives, respetively. For a seleted g value, qg an be determined for518



Expert-Guided Subgroup Disoverythis rule R. It an be shown that all points that have the same quality qg as rule R lie ona line de�ned by the following funtion:tp = TP � fpFP + g + TP � gFP + g = TP � (fp+ g)FP + g :In this funtion, tp represents the number of true positives of a rule with quality qg whihovers exatly fp negative examples. By seleting a di�erent fp value, the orrespondingtp value an be determined by this funtion. The line, determined by this funtion, rossesthe tp axis at point TP0 = TP � g=(FP + g) and the fp axis at point �g. This is shown inFigure 11. The slope of this line is equal to the quality of rule R, whih equals TP=(FP+g).
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Figure 11: Properties of rules with the samequality qg: Figure 12: Rules with highest quality in-luded into the beam for qg =TP=(FP + g).In the TP=FP spae, points with higher quality than qg are above this line, in thediretion of the upper left orner. Notie that in the TP=FP spae the top-left is thepreferred part of the spae: points in that part represent rules with the best TP=FPtradeo�. This reasoning indiates that points that will be inluded in the beam must alllie above the line of equal weights qbeam whih is de�ned by the last rule in the beam. Ifrepresented graphially, �rst beam width number of rules, found in the TP=FP spae whenrotating the line from point (0; P os) in the lokwise diretion, will be inluded in the beam.The enter of rotation is point (�g; 0). This is illustrated in Figure 12.On the other hand, for the q quality measure de�ned by q = TP��FP the situation issimilar but not idential. Points with the same quality lie on a line tp =  � (fp�FP )+TP ,but its slope is onstant and equal to . Points with higher quality lie above the line in thediretion of the left upper orner. The points that will be inluded into the beam are the�rst beam width points in the TP=FP spae found by a parallel movement of the line withslope , starting from point (0; P os) in the diretion towards the lower right orner. Thisis illustrated in Figure 13.Let us now assume that we are looking for an optimal rule whih is very spei�. Inthis ase, parameter  will have a high value while parameter g will have a very small value.The intention is to �nd the same optimal rule in the TP=FP spae. At the �rst stage ofrule onstrution only single features are onsidered and most probably their quality as the519
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Figure 13: Rules with highest quality in-luded in the beam for q = TP � � FP . Figure 14: Plaement of interesting fea-tures in the TP=FP spae afterthe �rst iteration.�nal solution is rather poor. See Figure 14 for a typial plaement of potentially interestingfeatures in the TP=FP spae.The primary funtion of these features is to be good building bloks so that by onjun-tively adding other features, high quality rules an be onstruted. By adding onjuntions,solutions generally move in the diretion of the left lower orner. The reason is that on-juntions an redue the number of FP preditions. However, they redue the number ofTP 's as well. Consequently, by onjuntively adding features to rules that are lose to theleft lower orner, the algorithm will not be able to �nd their speializations nearer to theleft upper orner. Only the rules that have high TP value, and are in the upper part of theTP=FP spae, have a hane to take part in the onstrution of interesting new rules.Figure 15 illustrates the main di�erene between quality measures qg and q: the formertends to selet more general features from the right upper part of the TP=FP spae (pointsin the so-alled `g spae'), while the later `prefers' spei� features from the left lower orner(points in the so-alled ` spae'). In ases when  is very large and g is very small, the e�etan be so important that it may prevent the algorithm from �nding the optimal solutioneven with a large beam width. Notie, however, that Algorithm SD is heuristi in its natureand no statements are true for all ases. This means that in some, but very rare ases, aquality measure based on parameter  may result in a better �nal solution.4.2 Experimental Evaluation of the HeuristisFor the purpose of omparing the qg and q measures, a TP=FP onvex hull for eah ofthe two measures has been onstruted. The proedure was repeated for stages A{C. TheTP=FP onvex hulls for the qg measure were onstruted so that for di�erent g valuesmany subgroups were onstruted. Among them those lying on the onvex hull in theTP=FP spae were seleted: this resulted in onvex hulls presented by the thik lines inFigures 16{18. The thin lines represent the TP=FP onvex hulls obtained in the same wayfor subgroups indued by the q measure, for  values between 0.1 and 50.Figures 16-18 for stages A{C demonstrate that both urves agree in the largest part ofthe TP=FP spae, but that for small FP values the qg measure is able to �nd subgroups520



Expert-Guided Subgroup Disovery
Figure 15: The quality q employing the parameter tends to selet pat-terns (points) with small TPvalues, while quality qg employ-ing the g parameter will inludealso many patterns with largeTP values (from the right partof the TP=FP spae) that havea hane to be used in build-ing onjuntions of high qualityrules.overing more positive examples. Aording to the analysis in the previous setion, thiswas the expeted result. In order to make the di�erene more obvious only the left part ofthe TP=FP spae is shown in these �gures. Figure 16: The left part of the TP=FPspae presenting the TP=FPonvex hulls of subgroups in-dued using quality measuresqg = TP=(FP + g) (thik line)and q = TP �  � FP (thinline) at data stage A. LabelsA1{C1 denote positions of sub-groups seleted by the medialexpert as interesting risk groupdesriptions.

Figure 17: The left part of the TP=FP on-vex hulls representing subgroupsindued at data stage B. Figure 18: The left part of the TP=FPonvex hulls representing sub-groups indued at data stage C.521



Gamberger & Lavra�The di�erenes between the TP=FP onvex hulls for qg and q measures may seem smalland insigni�ant, but in reality it is not so. The majority of interesting subgroups (thislaim is supported also by patterns A1{C1 seleted by the domain expert) are subgroupswith a small false positive rate whih lie in the range in whih qg works better. In addition,for subgroups with FP = 0 the true positive rate in our examples was about two timeslarger for subgroups indued with qg than with q. Furthermore, note that for stages A andB there are two out of �ve subgroups (A2 and C1) whih lie in the gap between the TP=FPonvex hulls. If the q measure instead of qg measure were used in the experiments withCHD domain, at least subgroup A2 ould not have been deteted.5. Related WorkThis setion provides omparisons and links to related work in subgroup disovery, measuresof interestingness, evaluation measures and visualization.5.1 Subgroup DisoveryThe need for user interativity in subgroup disovery is addressed by Wrobel S. et al. (1996),desribing a system developed in the KESO European researh projet (Knowledge Extra-tion for Statistial OÆes) and in the systems EXPLORA (Kl�osgen, 1996) and MIDOS(Wrobel, 1997, 2001). EXPLORA treats the learning task as a single relation problem, i.e.,all the data are assumed to be available in one table (relation), whereas MIDOS extendsthis task to multi-relation databases, whih is related to a number of other learning tasks(De Raedt & Dehaspe, 1997; Mannila & Toivonen, 1996; Wrobel & D�zeroski, 1995), mostlyin the �eld of Indutive Logi Programming (D�zeroski & Lavra�, 2001; Lavra� & D�zeroski,1994).The most important features of EXPLORA and MIDOS, related to this paper, onernthe use of heuristis for subgroup disovery; the measures of interestingness and the searhheuristis are outlined in separate setions below. A related approah to our approahto rule subset seletion, presented in Setion 2.3, is Gebhardt's (1991) work on subgroupsuppression.Note that some approahes to assoiation rule indution an also be used for subgroupdisovery. For instane, the APRIORI-C algorithm (Jovanoski & Lavra�, 2001), whihapplies assoiation rule indution to lassi�ation rule indution, outputs lassi�ation ruleswith guaranteed support and on�dene with respet to a target lass. If a rule satis�es alsoa user-de�ned signi�ane threshold, an indued APRIORI-C rule is an independent `hunk'of knowledge about the target lass, whih an be viewed as a subgroup desription withguaranteed signi�ane, support and on�dene. Similarly, the on�rmation rule onept,introdued by Gamberger and Lavra� (2000) and used as a basis for the subgroup disoveryalgorithm in this paper, utilizes the minimal support requirement as a measure whih mustbe satis�ed by every rule in order to be inluded in the indued on�rmation rule set.Both above mentioned approahes to subgroup disovery exploit the information aboutlass membership. One of the main reasons why these approahes are of interest for sub-group disovery is that, unlike the lassial lassi�ation rule indution algorithms suh asCN2 (Clark & Niblett, 1989) and AQ (Mihalski, Mozeti�, Hong, & Lavra�, 1986), they donot use the overing algorithm. In overing algorithms only the �rst few indued rules may522



Expert-Guided Subgroup Disoverybe of interest as subgroup desriptors with suÆient overage. Subsequently indued rulesare indued from biased example subsets, e.g., subsets inluding only positive examplesnot overed by previously indued rules. This bias onstrains the population for subgroupdisovery in a way that is unnatural for the subgroup disovery proess whih is, in general,aimed at disovering interesting properties of subgroups of the entire population.Reent approahes to subgroup disovery aim at overoming the problem of this inap-propriate bias of the standard overing algorithm. The reently developed subgroup dis-overy algorithms CN2-SD (Lavra�, Flah, Kav�sek, & Todorovski, 2002) and RSD (Lavra�,�Zelezn�y, & Flah, 2002) use the so-alled weighted overing algorithm, similar to the oneimplemented in Algorithm DMS desribed in this paper.Instane weights play an important role in boosting (Freund & Shapire, 1996) andalternating deision trees (Shapire & Singer, 1999). Instane weights have been usedalso in variants of the overing algorithm implemented in rule learning approahes suh asSLIPPER (Cohen, 1999), RL (Lee, Buhanan, & Aronis, 1998) and DAIRY (Hsu, Soderland,& Etzioni, 1998). A variant of the weighted overing algorithm has been used also in theontext of on�rmation rule subset seletion (Gamberger & Lavra�, 2000), used as a basisfor the rule subset seletion algorithm RSS desribed in this paper.5.2 Measures of InterestingnessVarious rule evaluation measures and heuristis have been studied for subgroup disovery,aimed at balaning the size of a group (referred to as fator g by Kl�osgen, 1996) withits distributional unusualness (referred to as fator p). The properties of funtions thatombine these two fators have been extensively studied (the so-alled \p-g-spae").Similarly, the weighted relative auray heuristi, de�ned asWRA(Class Cond) =p(Cond) � (p(ClassjCond)� p(Class)) and used by Todorovski, Flah, and Lavra� (2000),trades o� generality of the rule (p(Cond), i.e., rule overage) and relative aurayp(ClassjCond)� p(Class). This heuristi is a reformulation of one of the measures used inEXPLORA.Besides suh `objetive' measures of interestingness, some `subjetive' measure of in-terestingness of disovered patterns an be taken into the aount, suh as ationability(`a pattern is interesting if the user an do something with it to his or her advantage')and unexpetedness (\a pattern is interesting to the user if it is surprising to the user")(Silbershatz & Tuzhilin, 1995).5.3 Subgroup Evaluation MeasuresEvaluation of indued subgroups in the ROC spae (Provost & Fawett, 2001) shows las-si�er performane in terms of false alarm or false positive rate FPr = FPTN+FP (plotted onthe X-axis) that needs to be minimized, and sensitivity or true positive rate TPr = TPTP+FN(plotted on the Y -axis) that needs to be maximized. The ROC spae is appropriate formeasuring the suess of subgroup disovery, sine subgroups whose TPr=FPr tradeo� islose to the diagonal an be disarded as insigni�ant. An appropriate approah to evalu-ating a set of indued subgroups is by using the area under the ROC onvex hull de�ned bysubgroups with the best TPr=FPr tradeo� as a quality measure for omparing the suessof di�erent learners. 523



Gamberger & Lavra�Alternatives to the area under the ROC onvex hull omputation are other standardevaluation measures used in rule learning, suh as preditive auray or, in the ase oftime/eÆieny onstraints that need to be taken into the aount, the tradeo� measuresDEA (Keller, Paterson, & Berrer, 2000) and Adjusted Ratio of Ratios (ARR) (Brazdil,Soares, & Pereira, 2001) that ombine auray and time to assess relative performane.Optimized auray is, however, not the ultimate goal of subgroup disovery. In additionto the area under the ROC onvex hull quality measure, other important suess measuresare rule signi�ane (measuring the distributional unusualness of a subgroup), rule overage(measuring how large is a disovered subgroup), rule size and size of a rule set (measuringthe simpliity and understandability of disovered knowledge). These measures were usedto evaluate the results of the CN2-SD subgroup disovery algorithm (Lavra� et al., 2002).5.4 Subgroup VisualizationData visualization methods have been part of statistis and data analysis researh for manyyears. This researh onentrated primarily on plotting one or more independent variablesagainst a dependent variable in support of exploratory data analysis (Tukey, 1977; Lee,Ong, & Quek, 1995; Unwin, 2000).The visualization of analysis results has, however, gained only reently some attentionwith the proliferation of data mining (Card, Makinlay, & Shneidermann, 1999; Fayyad,Grinstein, & Wierse, 2002; Keim & Kriegel, 1996; Simo�, Noirhomme-Fraiture, & Boehlen,2001). The visualization of analysis results primarily serves four purposes: better illustratethe pattern to the end user, enable the omparison of patterns, inrease pattern aeptane,and enable pattern editing and support for \what-if questions". The reent interest inthe visualization of analysis results was spawned by the often overwhelming number andomplexity of data mining results.Readers interested in omparing the visualization method proposed in this paper withother subgroups visualization methods an �nd the visualization of subgroups A1{C1 in thejoint work by Gamberger, Lavra�, and Wettsherek (2002).6. ConlusionsThis paper presents a novel subgroup disovery algorithm integrated into the end to endknowledge disovery proess. The disussion and empirial results point out the importaneof e�etive expert-guided subgroup disovery in the TP=FP spae. Its main advantages arethe possibility to indue knowledge at di�erent levels of generalization (ahieved by tuningthe g parameter of the subgroup disovery algorithm) used in the rule quality measurethat ensures the indution of high quality rules also in the heuristi subgroup disoveryproess. The paper argues that expert's involvement in the indution proess is neessaryfor suessful ationable knowledge generation.The proposed expert-guided subgroup disovery proess onsists of the following steps:problem understanding, data understanding and preparation, subgroup disovery, subgroupsubset seletion, statistial haraterization of subgroups, subgroup visualization, their in-terpretation and evaluation. The main steps, desribed in detail in this paper, are subgroupdisovery and the seletion of a subset of diverse subgroups, followed by the statistial har-aterization of subgroups that adds supporting fators to the indued subgroup desriptions.524
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