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Abstract

This paper is a study of the problem of relevance in inductive concept learning. It gives def-

initions of irrelevant literals and irrelevant examples and presents e�cient algorithms that en-

able their elimination. The proposed approach is directly applicable in propositional learning

and in relation learning tasks that can be solved using a LINUS transformation approach. A

simple inductive logic programming (ILP) problem is used to illustrate the approach to irrel-

evant literal and example elimination. Results of utility studies show the usefulness of literal

reduction applied in LINUS and in the search of re®nement graphs. Ó 1999 Elsevier Science

Inc. All rights reserved.

Keywords: Concept learning; Inductive logic programming; Relevance of literals and

examples; Cost-sensitive literal reduction

1. Introduction

Inductive concept learning can be viewed as a process of searching a space of con-
cept descriptions (hypotheses) [27] aimed to ®t a given dataset. If the learner has no
prior knowledge about the learning problem, it learns exclusively from examples.
However, di�cult learning problems typically require a substantial body of prior
knowledge to be considered in the learning process. For instance, in inductive logic
programming (ILP) [28,31,19], a relation learning task involves learning of an inten-
sional de®nition of a target relation (a hypothesis H ) from the extensional de®nition
of this relation (training examples E ) and de®nitions of other relations relevant for
the task (background knowledge B).

Although the use of a substantial body of background knowledge is usually in-
valuable for the success of learning, using too much information may sometimes
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have the opposite e�ect. First of all, substantial amount of background knowledge
largely increases the search space of hypotheses, which results in decreased e�ciency
of learning. Moreover, incorporating inappropriate background knowledge may also
cause increased complexity and/or decreased accuracy of induced hypotheses (for ex-
perimental evidence, see Ref. [6]). It is therefore important to determine what parts
of information contained in the training set and in the background knowledge are
relevant for the success of learning; this is the topic of interest of this study.

In inductive concept learning, the hypothesis language and the background know-
ledge (together with some explicit de®nitions and/or implicit assumptions) de®ne the
basic language elements that constitute the hypothesis space. Literals are the basic
language elements in a ®rst-order language. Logically speaking, attribute-value
pairs, features, selectors, etc., which are the basic ingredients of various proposition-
al representations, can also be considered as literals.

The primary aim of the theory of relevance presented in this paper is to detect
which literals are irrelevant for learning and to exclude them, in order to reduce
the hypothesis space and facilitate the search for the ®nal solution. The secondary
aim is to reduce also the number of training examples. Whereas the elimination of
literals may be done more or less regardless of the speci®c properties of the learning
domain and the learning algorithm used, the elimination of training examples needs
to be done with caution: the exclusion of examples may change the statistical prop-
erties of the training set (the distribution of positive and negative examples) which
may be inappropriate for algorithms using statistical measures in learning and
noise-handling procedures, such as learning and pruning of decision trees [36].

The paper gives de®nitions of irrelevant literals and irrelevant examples and pre-
sents e�cient algorithms that enable their elimination. Besides reducing the hypoth-
esis space, the elimination of irrelevant literals and examples may contribute to the
better understanding of the problem domain. For example, this may be important in
data analysis where irrelevant literals may indicate that some measurements are not
needed, whereas irrelevant examples may indicate the uninteresting cases that do not
require further attention when studying the domain.

The developed theory of relevance is applicable in propositional learning. In this
paper, the impacts of the theory of relevance are studied in a restricted inductive log-
ic programming (ILP) context, using the LINUS transformation approach which en-
ables learning in deductive databases [18,19].

The outline of the paper is as follows. Section 2 presents the scope of this research
and an overview of related work. The transformation approach is sketched in Sec-
tion 3, which introduces a simple relation learning task, illustrates an example run
of LINUS, and gives the complexity of the LINUS transformation approach. It also
presents a transformation approach applicable in propositional learning.

A theoretical study of irrelevant literal and example elimination is given in Section
4. It introduces literals and pairs of examples (the so-called p=n pairs), gives de®ni-
tions of irrelevant literals and irrelevant examples and presents theorems which are
the basis for literal and example elimination. Section 5 presents the algorithms for
literal and example elimination and illustrates an example run of the algorithms.

Section 6 studies the utility of the irrelevant literal elimination algorithm used as
part of the LINUS transformation, and presents the results of experiments in a num-
ber of typical relational problem domains. Section 7 is a study of the e�ectiveness of
literal elimination in the search of re®nement graphs, a learning technique frequently
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used in ILP. The experiments, using a simpli®ed re®nement operator, con®rm the
potential of irrelevant literal elimination for reducing the search space of hypotheses
in ILP. The paper concludes with a discussion and directions for further work.

2. Scope and related work

The problem of relevance has been addressed already in early inductive con-
cept learning research [26]. This problem is actually encountered by every induc-
tive learner. Basically, all learners are concerned with the selection of relevant
literals. Usually, at each step of learning, the choice of the `best' or `most infor-
mative' literal needs to be made. This choice is frequently based on the distribu-
tion of positive and negative examples covered by the hypothesis before and after
literal selection, e.g., Refs. [35,36]. Whereas in most learning systems the selection
of signi®cant or informative literals is part of the learning process, the theory of
relevance presented in this paper is aimed at pointing out which literals constitute
a set of relevant literals and which literals are irrelevant and can be discarded,
without even entering the `best literal' competition. Such a ®ltering of irrelevant
literals can thus be done in preprocessing of the set of training examples. Whereas
most other algorithms only consider the `local training set' (i.e., a subset of exam-
ples covered by the currently developed rule, or a subset of examples in the cur-
rently developed node of a decision tree) when deciding about the importance/
relevance of literals, we are concerned with ®nding `globally relevant' literals
w.r.t. the entire set of training examples. This is important since the elimination
of globally irrelevant literals guarantees that literal elimination will not harm the
hypothesis formation process.

The problem of relevance has recently attracted much attention in the context of
feature subset selection in propositional learning [2,13,16,24,39]. An extensive discus-
sion of di�erent approaches to feature subset selection can be found in Ref. [15],
which distinguishes between ®lter and wrapper approaches, and introduces the no-
tions of totally irrelevant, weakly relevant and strongly relevant features. In this cat-
egorization, our work belongs to ®lter approaches which eliminate totally irrelevant
features in preprocessing. Other ®ltering approaches include di�erent versions of the
RELIEF algorithm [14,17], the FOCUS algorithm [1] and an approach to feature se-
lection proposed in Ref. [33].

The de®nition of relevance in this work di�ers from the de®nitions of relevance in
the above approaches. RELIEF [14,17] estimates the relevance of features based on a
combination of statistical and topological properties (proportion of positive and
negative nearest neighbors to randomly selected instances), and eliminates weakly
relevant features. In contrast, our de®nition of the irrelevance of literals is based
on the coverage of pairs of examples, where an example pair consists of one positive
and one negative example. The idea of using pairs of examples was developed and
used within the ILLM algorithm for learning generalized CNF/DNF descriptions
[9], whereas its origins stem from the theory of Boolean functions [3]. This is related
to FOCUS [1] which introduces a similar concept of example pairs called a set of
con¯icts. The main di�erence to our approach is that the set of con¯icts is based
on the coverage by features (and not by literals) and that the obtained minimal set
of features contains strongly relevant features. A similar approach is iterativelly
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applied in Ref. [33] with the intention to enable constructive induction based on bi-
nary features.

The distinguishing feature of the theory and algorithms presented in this paper is
the capability of dealing with costs of literals, which is important for practical do-
mains (e.g., medical diagnostic problems). Cost-sensitive literal reduction was stud-
ied in an application of a hybrid genetic algorithm RL-ICET to two ``challenges to
the international computing community'' to discover low size-complexity Prolog
programs for classifying trains as Eastbound or Westbound (the so-called East±West
challenges). This application showed signi®cant improvement of performance of the
hybrid genetic algorithm due to applying irrelevant literal elimination in preprocess-
ing of the dataset. In this application, costs were treated as an estimate of the com-
plexity of literals [21,22].

The approach presented in this paper deals with noiseless domains. However, the
presented theory of relevance can be upgraded to dealing with noise by applying an
approach to noisy example elimination, presented in Refs. [9±11], provided that a
learner based on the minimum description length (MDL) principle is used for learn-
ing [5,23]. In comparison with other approaches to relevance, notice that also the
adapted RELIEF algorithm presented in Ref. [17] can deal with noisy data, whereas
Refs. [1,33] are designed for noiseless domains.

Our approach to cost-sensitive literal elimination can be easily reimplemented in
an iterative algorithm, starting with an initial (possibly empty) set of literals and add-
ing relevant literals only [22]. This is particularly useful for tasks in which bias shift is
needed. Bias shift can be implemented by shifting to a more expressive hypothesis
language in a language hierarchy given by the user. On the other hand, a learner
may perform bias shift by constructive induction/predicate invention, where the rel-
evance of newly costructed literals can be tested in data preprocessing.

As noted above, our approch to dealing with relevance is not based on the statis-
tical properties of the training set. On the contrary, it is a deterministic consequence
of the known properties and dependencies among literals (and examples). Similar de-
terministic complexity reduction approaches were studied long ago in the ®elds of
game theory [32,37] and switching circuit design [12]. In game theory, the approach
studies the notion of `dominance': when does a (dominant) strategy dominate an-
other (dominated) strategy. The de®nition of dominance was and still is essential
for some problems in game theory because it is the only way how, by the elimination
of dominated startegies, these problems can be solved. Game theory distinguishes the
notions of strong dominance, weak dominance and iterative dominance [37]. Our
term of relevance corresponds to the de®nition of strong dominance.

The dominance approach was e�ectively used in the ®eld of minimal complexity
realization for switching functions where the aim is to ®nd a minimal cover from
the set of all prime implicants [34]. This ®eld introduced the term `covering' in the
sense that an instance can be (but should not be), covered by some prime implicant.
Also the dominance property has been de®ned both for columns (prime implicants)
and rows (instances). It is generally assumed that all prime implicants have the same
weight, and the intention is to ®nd the solution with the least number of di�erent
prime implicants.

It must be noted that the deterministic theory of dominance (relevance) cannot be
applied to inductive learning problems in their original form, except for trivial cases
with identical inputs (features or attributes). The necessary prerequisite for the appli-
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cability of the deterministic notion of relevance is the transformation of the original
problem into the standard covering problem. From the theory of Boolean functions
it is known that the transformation can be done by introducing instance (example)
pairs where each pair is built from one positive and one negative instance [3]. This
approach is much less popular than the well-known Quine±McCluskey prime impli-
cant approach. The reason is that the obtained covering table has the number of
rows proportional to the square of the number of instances (examples). But the ap-
proach with instance pairs can have signi®cant advantages when the target function
is incompletely speci®ed with the unknown output value for many input combina-
tions. This concept is the basis for the suggested transformation of examples into
the form of truth-value tuples described by literals and the basis for the theorems
presented in this paper.

3. A transformation approach to inductive learning

In order to facilitate the presentation of the proposed theory of relevance, we ®rst
need to appropriately incorporate the available background knowledge into the
learning task; namely, the set of considered literals directly depends on the back-
ground knowledge. This will be done in preprocessing, by applying a transformer
which takes as its input the initial dataset, the form of basic language elements (lit-
erals) and background knowledge, and gives as its output a transformed set of train-
ing examples E, described by literals.

In our work, preprocessing consists of two steps:
1. Transformation of the given dataset into the form of truth-value tuples E de-

scribed by literals L.
2. Elimination of irrelevant literals and examples, resulting in there duced set of rel-

evant literals RL and relevant examples RE.
Step 2 is the central theme of this paper, whereas step 1 is a necessary prerequisite for
step 2. Step 1 is brie¯y described in this section.

3.1. Prerequisites

Recall the following logic programming terminology [25]. A term is a variable or a
function symbol followed by a bracketed n-tuple of terms. A constant is a function
symbol of arity 0. An atom (or an atomic formula) is a predicate symbol followed
by a bracketed n-tuple of terms. A literal is an atom (a positive literal) or a negation
of an atom (a negative literal).

For a positive literal l, its negation will be written as l, or :l, or not l.
Let us illustrate these de®nitions by examples: f �g�X �; h� is a term when f, g and h

are function symbols and X is a variable. If p=2 is a predicate of arity 2, p�X ; Y � is an
atom or a positive literal, whereas :p�X ; Y � is a negative literal. In the intended in-
terpretation (for given values of arguments of the predicate) a literal has a value true
or false.

In a relational data model, a relation is a set of tuples, i.e., a subset of the
Cartesian product of one or more domains D1 � � � � � Dn. A relation can be
viewed as a table, where each row is a tuple, and columns are often given names,
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called attributes. A relational database is a set of relations. A deductive database1

(DDB) is a set of database clauses of the form A L1; . . . ; Lm where A is an at-
om of the form p�X1; . . . ;Xn� with typed argyments Xi, and Li are literals (atoms
or negations of atoms). Atom A is called the head and the conjunction of literals
Li the body of the clause. A predicate de®nition is a set of clauses with the same
predicate in the head. The di�erence between program clauses (as used in logic
programming) and database clauses is that database clauses are typed, i.e., each
argument Xi of each predicate p in a DDB is assigned a type Ti. In DDB, a
ground fact is a unit clause, i.e., a clause with an empty body and no variables
in the head of the clause. A ground fact in a DDB is equivalent to a tuple in
a relational database.

A relation learning task can be de®ned as follows.

Given

· a set P of true ground facts of a target relation t (positive examples),
· a set N of false ground facts of the target relation t (negative examples),
· background knowledge B de®ning relations qi; i � 1; . . . ; k (other than t ) which

may be used in the de®nition of t, and
· a hypothesis language L, specifying syntactic restrictions on the de®nition of t
Find a de®nition H (hypothesis) of the taget relation t; H 2L, such that
· H covers all the positive examples, i.e., 8p 2 P : B [ H � p (completeness), and
· H covers none of the negative examples, i.e., 8n 2 N : B [ H 2 n (consistency).

This de®nition of the learning task is appropriate for non-noisy domains. For do-
mains with noise, the completeness and consistency requirements need to be relaxed
and replaced by other quality criteria (for di�erent criteria, see Ref. [19]).

In inductive concept learning, we distinguish between the propositional and the
®rst-order learning framework, depending on the choice of the hypothesis language.
In the propositional case, learning is usually called propositional learning or attribute-
value learning. Training examples E � P [ N are expressed as tuples of a relation t
and the induced hypothesis is usually represented in rule form (CNF, DNF) or de-
cision tree form. In the ®rst-order case, relation learning is called inductive logic pro-
gramming (ILP) when the selected representation language is the language of logic
programs consisting of program clauses. In learning from deductive databases, a
sub-language of the language of logic programs is used, e.g., the language of data-
base clauses (DDB ± typed program clauses), hierarchical database clauses (DHDB
± database clauses restricted to non-recursive predicate de®nitions and non-recursive
types), constrained DHDB clauses (all variables in the body literals appear in the
head literal), or Datalog (program clauses with no function symbols of non-zero ari-
ty).

In this paper, we assume that B is a deductive database formed of Datalog clauses
(which may also be ground facts), L is the language of function-free constrained
DHDB clauses, and training examples are ground facts.

Note that a fact e 2 E can be viewed as t�X1; . . . ;Xn�h, where a grounding substi-
tution h � fX1=v1; . . . ;Xn=vng makes e � t�X1; . . . ;Xn�h true for p 2 P and false for

1 We use the term deductive database (DDB) instead of the term normal database for the database that

consists of database clauses.
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n 2 N . Moreover, we will assume that a deductive database is implemented in Prolog
and that coverage is tested as a Prolog query: having asserted B and H in a Prolog
database, the answer true to a query ?ÿ q means that q is covered by H.

3.2. Transformation in learning from deductive databases

In the transformation approach to inductive logic programming, as implemented
in the LINUS and DINUS systems [18,19], a set of all literals to be considered by a
propositional learner is determined in preprocessing. The set of literals constructed
by LINUS will be denoted by Lp, where the subscript p denotes positive literals.
In this paper, these positive literals will also be called features.

3.2.1. An example run of LINUS
To illustrate the LINUS transformation approach, consider a ®rst-order relation

learning task typical for inductive logic programming. The example is taken from
Ref. [19]. It is suited for the LINUS approach whose hypothesis language is limited
to constrained DHDB clauses [18,19].

Suppose that the task is to de®ne the target relation daughter�X ; Y �, which states
that person X is a daughter of person Y, in terms of the background knowledge
relations female, male and parent. These relations are given in Table 1, where
all variables are of type person. The type person is de®ned as a set of
values: person � fann; eve; pat; sue; tomg. There are two positive examples
P � fdaughter�sue; eve�; daughter�ann; pat�g, assigned �, and two negative examples
N � fdaughter�tom; ann�; daughter�eve; ann�g, assigned 	, of the target relation
daughter whose intensional de®nition is to be learned from the given extensional def-
inition (training examples P [ N ) and background knowledge. Notice that LINUS is
not limited to extensional background knowledge B. It can use intensional de®ni-
tions of background predicates as well.

The LINUS transformation procedure [18,19] has as its input the training exam-
ples and background knowledge, and as its output a truth-value table of transformed
examples.

In the transformation of an ILP problem into the tabular form with elements true
and false, all the possible applications of the background predicates on the argu-
ments of the target relation are determined, taking into account argument types.
Each such application introduces a new literal which will, in the learning phase,
be considered as an attribute used in learning the target relation. Since the hypothesis
language is restricted to non-recursive constrained clauses, the following positive lit-
erals Lp are generated by the LINUS transformer: female�X �, female�Y �, male�X �,
male�Y �, parent�X ; X � parent�X ; Y �, parent�Y ; X �, and parent�Y ; Y �. In general,
LINUS would generate also the literal X � Y , which stands for equal�X ; Y �. Since

Table 1

A simple ILP problem: learning the daughter relationship

Target relation Background knowledge

daughter�sue; eve� � parent�eve; sue� female�ann� male�pat�
daughter�ann; pat� � parent�ann; tom� female�sue� male�tom�
daughter�tom; ann� 	 parent�pat; ann� female�eve�
daughter�eve; ann� 	 parent�tom; sue�
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in most of the domains of experiments in Sections 6 and 7 such a literal makes no
sense, it is excluded from the consideration of this paper (only in the chess endgame
this predicate is useful, where equal=2 is explicitly added to the background know-
ledge).

Notice that in our example all variables are of the same type person. In con-
strained clauses, for the target relation daughter�X ; Y � that should appear in the head
of a clause, the literals that may appear in the body of a clause may only use X and Y
in the arguments of background knowledge predicates, whereas literals introducing
new variables such as parent�X ; Z� are not considered.

The corresponding propositional learning problem is given in Table 2, where C
stands for Class, d stands for daughter, f for female, m for male and p for parent,
and Literals denote the literals that can be considered as attributes constructed for
a propositional learning task.

Observe in Table 2 that the LINUS transformation results in some senseless liter-
als such as p�X ;X � which are false for all training examples (nobody is his own par-
ent). In LINUS, this could be avoided by adding semantic information on individual
predicates which would prevent the generation of such literals. Alternatively, such
senseless literals can be eliminated by an algorithm for irrelevant literal elimination,
outlined in Section 5.

3.2.2. The complexity of the transformation approach
A complete complexity analysis for learning constrained DHDB clauses with LI-

NUS can be found in Ref. [19]. The relevant part of the complexity analysis is out-
lined below for the sake of completeness.

The analysis in this paper assumes the function-free restriction and does not con-
sider literals arising from the applications of the built-in predicate equality=2. Under
these restrictions, the number of positive literals jLpj is equal only to the number of
literals resulting from applications of the b background predicates qi on the argu-
ments of the target relation:

jLpj �
Xb

i�1

kNew;qi �1�

Suppose that u is the number of distinct types of arguments of the target predicate
t, ui is the number of distinct types of arguments of the background predicate qi, ni;s

is the number of arguments of qi that are of type Ts and kArgTs is the number of ar-
guments of target predicate t that are of type Ts. Then kNew;qi is computed by the fol-
lowing formula:

Table 2

Propositional form of the daughter relationship problem

C Examples d�X ; Y � Literals

f �X � f �Y � m�X � m�Y � p�X ;X � p�X ; Y � p�Y ;X � p�Y ; Y �
� d�sue; eve� true true false false false false true false
� d�ann; pat� true false false true false false true false
	 d�tom; ann� false true true false false false true false
	 d�eve; ann� true true false false false false false false
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kNew;qi �
Yui

s�1

�kArgTs�ni;s �2�

The ni;s places for arguments of type Ts can be, namely, ®lled in �kArgTs�ni;s ways inde-
pendently from choosing the arguments of qi which are of di�erent types.

In the daughter learning example, q1 � female, q2 � male and q3 � parent. As all
arguments are of the same type T1� person�; u1 � u2 � u3 � 1 and kArgT1

� 2. Since
there is only one type, ni can be used instead of ni;s. In this notation, n1 � n2 � 1
and n3 � 2. Thus, according to Eq. (2), kNew;q1

� kNew;q2
� �kArgT1

�n1 �
�kArgT1

�n2 � 21 � 2. This means that there are two applications of each of the predi-
cates female and male, namely f �X �, f �Y � and m�X �, m�Y �, respectively. Similarly,
kNew;q3

� �kArgT1
�n3 � 22 � 4, the four applications of parent=2 being p�X ;X �,

p�X ; Y �, p�Y ;X � and p�Y ; Y �. Finally, jLpj � kNew;q1
� kNew;q2

� kNew;q3
� 2� 2� 4 � 8.

It is obvious that the number of generated literals may increase the dimensionality
of the problem to an extent that may prevent the practical application of the trans-
formation approach for domains with large numbers of predicates in the background
knowledge, especially if these have many arguments (since the number of generated
literals grows exponentially with the number of arguments ± see Eq. (2)). Thus, when
taking into account all the literals, learning may become unfeasible, in particular in
the DINUS framework where the language bias is weakened and hypotheses consist
of determinate non-constrained clauses which may introduce new variables in the
body [9].

3.3. Transformation in propositional learning

The transformation procedure is rather straightforward for propositional learn-
ing. In propositional learning, the basic language elements are literals of the form
Attribute � Value and :�Attribute � Value� (i.e., Attribute 6� Value) for discrete attri-
butes. Training examples are bitstrings (tuples) of truth-values of these literals.

To illustrate this representation, consider a problem with two attributes, A and B,
and a training set of three examples, two positive examples �a2; b1� and �a3; b2� and a
negative example �a1; b2�. Then the following literals are created: A 6� a1, A � a2,
A � a3, B � b1, B � b2, B 6� b2, and the three truth-value tuples of literals are con-
structed: p1 � �true; true; false; true; false; true� and p2 � �true; false; true; false; true;
false� corresponding to the two positive examples, and n3 � � false; false; false;
false; true; false� corresponding to the negative example.2 Literals A � a1, A 6� a2,
. . . are not even considered since they are either false for all positive examples
(A � a1) or true for all negative examples (A 6� a2); as such they are useless for con-
structing a concept description.

2 Note that the examples in the initial dataset are described in the data description language, whereas the

tuples can be interpreted as the training examples, described by the primitives of the hypothesis language.

For instance, given the following primitives of the hypothesis language A 6� a1, A � a2, A � a3, B � b1,

B � b2, and B 6� b2, the tuple p2 � �true; false; true; false; true; false� corresponding to the initial training

example �a3; b2� is actually quivalent to the conjunctive description A 6� a1 ^ A � a3 ^ B � b2 in the

hypothesis language.
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Di�erent types of literals are constructed for continuous and integer-valued attri-
butes [21]. To formalise literal construction, let values vix (x � 1 . . . kip) denote the kip

di�erent values of attribute Ai that appear in the positive examples and wiy

( y � 1 . . . kin) the kin di�erent values of Ai appearing in the negative examples. The
transformation results in a set of literals L:
· For discrete attributes Ai, literals of the form Ai � vix and Ai 6� wiy are generated.
· For continuous attributes Ai, literals of the form Ai6 �vix � wiy�=2 are created for

all neighboring value pairs (vix;wiy), and literals literals Ai > �vix � wiy�=2 for all
neighboring pairs (wiy ; vix). The motivation is similar to one suggested in Ref. [7].

· For integer valued attributes Ai, literals are generated as if Ai were both discrete
and continuous, resulting in literals of four di�erent forms: Ai6 �vix � wiy�=2,
Ai > �vix � wiy�=2, Ai � vix, and Ai 6� wiy .

4. Theory of relevance

The main aim of the theory of relevance is to reduce the hypothesis space by the
elimination of irrelevant literals. Its secondary aim is the reduction of the space of
examples by the elimination of irrelevant examples.

4.1. Literals and p=n pairs of examples

In previous sections we have introduced literals as the basic language elements
constituting the hypothesis space.

Consider a two-class learning problem where training set E consists of positive
and negative examples of a concept (E � P [ N ) and examples e 2 E are tuples of
truth-values of literals L. Training set E is represented as a table where rows corres-
pond to training examples and columns correspond to literals. An element in the ta-
ble has the value true when the example satis®es the condition (literal) in the column
of the table, otherwise its value is false.

De®nition 1. Let E � P [ N , where P are positive and N are negative examples. A
p=n pair is a pair of training examples where p 2 P and n 2 N .

De®nition 2. Let L denote a set of literals. A literal l 2 L covers a pi=nj pair if the
literal has value true for pi and value false for nj.

Notice that in the standard machine learning terminology we may reformulate the
de®nition of coverage of p=n pairs as follows: literal l covers a p=n pair if l covers (has
value true for) the positive example p and does not cover (has value false for) the neg-
ative example n.

Example 1. Recall the learning problem from Section 3.2, where the de®nition of the
target relation daughter is to be induced from four training examples and the given
background knowledge consisting of de®nitions of background knowledge predi-
cates f =1 ( f stands for female), m=1 (male) and p=2 ( parent) (see Table 1). Recall
the two positive and two negative examples (symbol d stands for the predicate sym-
bol daughter):
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P � fp1; p2g � fd�sue; eve�; d�ann; pat�g

N � fn1; n2g � fd�tom; ann�; d�eve; ann�g
Recall that the extensional de®nition of the background knowledge predicate female
consists of three ground facts:

ff �ann�; f �sue�; f �eve�g
Consider now the target relation d�X ; Y � and the literal l � f �X �. Literal f �X � covers
p1=n1 since for p1 � d�sue; eve� the value of f �X � is true (since f �sue� can be found in
the extensional de®nition of the predicate f =1), and f �X � is false for n1 � d�tom; ann�
(since tom is not a female, i.e., f �tom� is not in the extensional de®nition of f =1). On
the other hand, f �X � does not cover p1=n2 since f �X � is true for p1 (sue is a female),
but f �X � is also true for n2 (eve is a female). Furthermore, f �X � covers p2=n1 and
does not cover p2=n2:

The notion of p=n pairs can be used to prove important properties of literals for
building complete and consistent concept descriptions [9]. The following theorem as-
sumes that the hypothesis language L is rich enough to allow for a complete and
consistent hypothesis H to be induced from the set of training examples E.

Theorem 1. Assume a training set E and a set of literals L such that a complete
and consistent hypothesis H can be found. Let L0 � L. A complete and consistent
hypothesis H can be found using only literals from the set L0 if and only if for each
possible p=n pair from the training set E there exists at least one literal l 2 L0 that
covers the p=n pair.

Proof. Necessity (only if ): Suppose that the negation of the conclusion holds, i.e.,
that a p=n pair exists that is not covered by any literal l 2 L0. Then no rule built
of literals from L0 will be able to distinguish between these two examples. Conse-
quently, a description which is both complete and consistent cannot be found.

Su�ciency (if): Take a positive example pi. Select from L0 the subset of all literals
Li that are true for pi. A constructive proof of su�ciency can now be presented,
based on k runs of a covering algorithm, where k is the cardinality of the set of pos-
itive examples (k � jP j). In the ith run, the algorithm learns a conjunctive description
hi, hi � li;1 ^ � � � ^ li;m, from all li;1; . . . li;m 2 Li that are true for pi. Each hi will thus be
true for pi (hi covers pi), and false for all n 2 N . After having formed all the k descrip-
tions hi, a resulting complete and consistent hypothesis can be constructed:
H � h1 _ � � � _ hk. �

The importance of Theorem 1 for the theory of relevance is manifold. First, it
points out that when deciding about the relevance of literals it will be signi®cant
to detect which p=n pairs are covered by the literal. Second, the theorem enables
us to directly detect useless literals as those that do not cover any p=n pair. In addi-
tion, an important property of pairs of literals can now be de®ned: the property of
the so-called coverage of literals.

De®nition 3. Let l 2 L. Let E�l� denote the set of all p=n pairs covered by literal l.
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De®nition 4. Literal l covers literal l0 if E�l0� � E�l�.

The example below shows some important properties of sets of literals and exam-
ples. It also intuitively introduces the notion of relevance of a literal.

Example 2. Suppose that we have a domain with two positive examples,
P � fp1; p2g, two negative examples N � fn1; n2g, and six literals: three positive
literals Lp � fl1; l2; l3g and three negative literals Ln � fl1; l2; l3g, as shown in
Table 3.

With this example we wish to illustrate that dealing with positive literals Lp only is
insu�cient and that both positive and negative literals should be considered.

Take for example literal l1 which covers two p=n pairs (p1=n1 and p2=n1) and the
literal l1 which does not cover any p=n pair at all (E�l1� � ;). Because of that, l1 can
be immediately detected as irrelevant for learning a concept description H.

Take as another example literal l2. It can be seen that it covers only the p=n pair
built of p1 and n2 while its logical complement l2 covers only the pair built of p2

and n1. Although l2 is a logical complement of l2, the sets of p=n pairs covered
by l2 and l2 are di�erent, therefore both the literal and its negation need to be con-
sidered. Consequently, in hypothesis construction and in literal elimination we
should consider a set of literals L consisting of positive and negative literals:
L � Lp [ Ln.

4.2. Costs of literals

Assume that costs are assigned to literals. Let c�l� denote the cost of literal
l 2 L. If costs are not assigned, all costs are assumed to be equal to 1, i.e.,
8l 2 L: c�l� � 1.

For the theory of relevance it is actually not important how costs are determined.
Cost of a literal can be the encoding length of a literal or any other cost function,
implicitly or explicitly using Occam's razor, which will a�ect the potential inclusion
of a literal into a concept description. For example, in the East±West challenge,
where cost-sensitive literal reduction was studied in an application of a hybrid genet-
ic algorithm RL±ICET to discover low size-complexity Prolog programs for classi-
fying trains as Eastbound or Westbound [21,22], costs were used as a measure of
complexity ± the more complex is a literal, the higher is its cost. A possible complex-
ity measure for literals can be found in Ref. [5].

Table 3

Coverage of literals and importance of positive and negative literals

Examples Literals

l1 l1 l2 l2 l3 l3

p1 � false true true false false true
p2 � false true false true true false

n1 	 true false true false true false
n2 	 false true false true false true
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4.3. Relevance of literals

Example 2 already identi®ed useless literals as those for which E�l� � ;. Such lit-
erals can be immediately eliminated from the set of literals L, regardless of their cost
and regardless of the properties of other literals.

In order to identify other literals that can be eliminated from the set of literals
needed for hypothesis construction, we need to make the assumption that hypothesis
construction will be performed by a learner that prefers hypotheses of lower cost
(complexity). For instance, learners of this type are learners based on MDL which
aim at minimizing the Kolmogorov complexity of theories (see for example Ref.
[23]).

De®nition 5. Literal l0 is irrelevant if there exists another literal l 2 L such that l cov-
ers l0 (E�l0� � E�l�) and the cost of l is lower than or equal to the cost of l0

(c�l�6 c�l0�).

De®nition 6. Let H�E; L� denote a hypothesis H built from example set E and literal
set L.

Lemma 1. Let l; l0 2 L. Let P �l� denote the subset of positive examples for which l has
value true and N�l� denote the subset of negative examples for which l has value false.
E�l0� � E�l� implies P �l0� � P �l� and N�l0� � N�l�. The reverse is also true: from
P �l0� � P�l� and N�l0� � N�l� it follows that E�l0� � E�l�.

Proof. The proof of this lemma can trivially be veri®ed by contradiction. �

Theorem 2. If a literal l0 2 L is irrelevant then for every complete and consistent hy-
pothesis H � H�E; L� whose description includes literal l0, there exists a complete
and consistent hypothesis H 0 � H�E; L0�, built from the literal set L0 that excludes l0

�L0 � L n fl0g� which has a lower cost than H �c�H 0�6 c�H��.

Proof. Suppose that E�l0� is not an empty set. If l0 is irrelevant, there exists l such that
E�l0� � E�l�, and therefore P �l0� � P �l� and N�l0� � N�l�. This implies that each hy-
pothesis, which is built using literal l0 and is complete and consistent for all the train-
ing examples, will remain complete and consistent if we substitute every occurrence
of literal l0 by literal l. Since the cost of l is less than or equal to c�l0�, the cost of the
concept description after the substitution of l0 by l will not be greater than before.
This proves that for each hypothesis eliminated from the hypothesis space by the
elimination of l0 there remains at least one other hypothesis that is at least as good
as the eliminated one. �

This theorem is the basis of an algorithm for the elimination of irrelevant lit-
erals from the initial set of literals L, resulting in a reduced set of relevant literals
RL. It should again be stressed that the (ir)relevance of literals is de®ned for the
given set of training examples E and for the given set of literals L. The implemen-
tation of a cost-sensitive literal elimination algorithm (called REDUCE) is given
in Section 5.
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4.4. Relevance of features

In this work, the term feature is used to denote a positive literal l. Let Lp denote a
set of positive literals (features).

In a hypothesis language, the existence of a feature l implies the existence of two
complementary literals: a positive literal l and a negative literal :l. Let L denote the
set of positive and negative literals, L � Lp [ Ln.

Since each feature implies the existence of two literals, the necessary and su�cient
condition that a feature can be eliminated as irrelevant is that both of its literals are
irrelevant.

It must be noted that direct detection of irrelevant features (without conversion to
and from the literal form) is not possible except in the trivial case where two (or
more) features have identical columns in the table E. Only in this case a feature f ex-
ists whose literals f and :f cover both literals g and :g of some other feature. In a
general case if a literal of feature f covers some literal of feature g then the other lit-
eral of feature g is not covered by the other literal of feature f. But it can happen that
this other literal of feature g is covered by a literal of some other feature h. This
means that although there is no such feature f that covers both literals of feature
g, feature g can still turn out to be irrelevant.

This needs to be considered in literal elimination. One has to eliminate irrelevant
literals from the literal set L � Lp [ Ln in order to get a set of relevant literals. On the
other hand, if we wish to construct a set of relevant features, this set should include
all the features which have at least one of their literals in the relevant literal set. For
the formalization of these notions and the empirical veri®cation of claims see Section
6.

4.5. Relevance of examples

Besides the theory of relevance for literals we can similarly de®ne the theory of
relevance for training examples. Its aim is to eliminate irrelevant examples from
the training set E in such a way that any hypothesis built of literals from L that is
correct (complete and consistent) for all the examples from the reduced set of exam-
ples RE will also be correct for all the examples of the initial training set E. By re-
ducing the number of examples in the learning space, the search for the ®nal
concept description by an inductive learning algorithm can be made more e�cient,
without fearing that the result of learning will be incorrect.

At this point we have to make sure that the reader is aware of the preconditions
we have made for the validity of our claims. The elimination of irrelevant examples
may be applied only in exact domains or when a learner using some minimization/
compression measure is used for learning from the reduced example set. Caution
is needed because example elimination can change the distribution of positive and
negative examples, this distribution being crucial for learners using statistical mea-
sures. Notice that, on the other hand, literal elimination can be applied in general
without restrictions.

De®nition 7. If an example is positive, p 2 P , then L�p� represents a subset of literals
in L that have value true for example p. If n is a negative example, n 2 N , then L�n�
represents a subset of literals in L that have value false for the example n.
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De®nition 8. Example e covers e0 if L�e� � L�e0� and if examples e and e0 are either
both positive or both negative.

De®nition 9. An example e0 is irrelevant if there exists at least one example e 2 E
such that e covers e0.

Theorem 3. If a positive example e0 2 E is irrelevant then for every complete and con-
sistent hypothesis H 0 � H�E0; L� built from example set E0 that excludes e
(E0 � E n fe0g) it holds that H 0 covers e0.

A dual theorem holds for negative examples: If a negative example e0 2 E is irrele-
vant then for every complete and consistent hypothesis H 0 � H�E0; L� built from exam-
ple set E0 � E n fe0g it holds that H 0 does not cover e0.

Proof. Suppose that e0 is a positive irrelevant example eliminated from E because it
was covered by e�. If the example e� is also eliminated from E because it was covered
by another example e then it is true that e covers e0 as well (the property of transi-
tivity holds). It means that after all the eliminations of irrelevant examples from E, at
least one example that covers the eliminated example e0 must remain in the reduced
training set RE. Let us use the label e to denote the remaining example. If any literal l
is true for example e then l is also true for e0 (see De®nitions 8±10). This means that if
we form any conjunctive and/or disjunctive description H 0 as a combination of liter-
als that are true for e then H 0 must be true for e0 as well. This proves that e0 is covered
by H 0. An analogous proof for e0 being a negative example can be made. �

Example 3. Reconsider Table 3 from Example 2 where p1, p2 are positive examples
and n1, n2 are negative examples. No example is covered by another example.

On the other hand, consider the situation presented in Table 4. Example p1 covers
p2, therefore p2 can be eliminated from the training set. Notice that this situation ac-
tually occurs in the problem of learning family relations (see Table 8 of Section 5.3).

The presented theory of relevance is the basis of algorithms for irrelevant literal
and example elimination, introduced in the following Section.

5. Literal and example elimination algorithms

Recall Lemma 1 from Section 4.3 stating that for l; l0 2 L, E�l0� � E�l� is equiva-
lent to P�l0� � P �l� and N�l0� � N�l�. This property enables us to execute the search

Table 4

An example showing the coverage of examples

Examples Literals

l1 l2 l3

p1 � true false true
p2 � true true true
n1 	 false false true
n2 	 true false false
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for irrelevant literals over two separate example sets (P and N ) instead of over the
much larger set of p=n pairs.

5.1. Covering tables

The tranformation of examples into truth-value tuples is su�cient for our theoret-
ical investigation of the problem of relevance. However, for e�ciency reasons of a
practical implementation of literal and example elimination algorithms presented
in Section 5.2, a di�erent transformation step is recommended: tuples of truth values
are transformed into bitstrings consisting of values 1 and 0. This results in two sep-
arate matrices for positive and negative examples (the so-called P and N tables). Sec-
tion 5.2 is based on this representation which allows for e�cient bitstring
manipulation.

In brief, the transformation goes as follows. For a positive example, a bitstring in
a P table has value 1 if a literal has value true, and 0 if a literal has value false. For a
negative example, the bit assignment is just the opposite: 1 is assigned to value false
and 0 to value true.

Intuitively, in a binary decision problem (two classes: � and 	) literals that
have value 1 (true) for a positive example and value 0 ( false) for a negative example
have the greatest discriminating power for distinguishing between the two decision
classes. Thus, stating it informally, literals with a larger number of 1 elements in
the corresponding column of the table are better candidates for inclusion in a
hypothesis and should not be eliminated. On the other hand, literals with a smaller
discriminating power, having many 0 elements are less promising for inclusion in a
hypothesis.

Similar intuitions are the basis for example elimination. In contrast with the
above situation, where a literal is more relevant if it has more 1 elements in the cor-
responding column, an example is more relevant if it has less 1 elements in the
corresponding row. To illustrate this, suppose that in P table we have a row
01001 for a positive example whose truth-value tuple is � false; true; false; false; true�
for literals l1; l2; l3; l4; l5. This example is covered by a conjunctive description
l2 ^ l5. Another positive example 01101 which has value 1 in the same columns
as example 01001 is covered by the same conjunctive description, since
l2 ^ l3 ^ l5 is more speci®c than l2 ^ l5, and l2 ^ l5 covers l2 ^ l3 ^ l5. Thus, intu-
itively speaking, the second positive example is irrelevant and we do not need to
consider it for learning since only considering example 01001 guarantees the cov-
erage of 01101 as well.

5.2. Elimination algorithms

Algorithms 1 and 2 implement the relevance theory adapted to the above de®-
nitions of P and N table. Initial versions of these algorithms, disregarding costs,
were developed within the ILLM learner [9]. Algorithm 1 (called REDUCE) can
be easily transformed into an iterative algorithm that can be used during the pro-
cess of generation of literals [22]. In this way the irrelevant literals with respect to
the already generated literals can be eliminated without even entering the P and N
tables. This approach can signi®cantly reduce the space required for storing P and
N tables.
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Algorithm 1. Cost-sensitive literal elimination (REDUCE )
Procedure LiteralElimination�P ;N ;CL; L;RP ;RN ;RL�

Given: CL ± costs of literals in L
Input: P, N ± tables of positive and negative examples, L ± set of literals
Output: RP, RN ± reduced tables of positive and negative examples,

RL ± reduced set of literals
RP  P , RN  N , RL L
for 8 li 2 RL, i 2 �1; jLj� do
if li has value 0 ( false) for all rows of RP then

eliminate li from RL
eliminate column li from RP and RN tables

if li has value 0 (true) for all rows of RN then

eliminate li from RL
eliminate column li from RP and RN tables

if li is covered by any lj 2 RL for which c�lj�6 c�li� then

eliminate li from RL
eliminate column li from RP and RN tables

endfor

Algorithm 2. Example elimination
Procedure ExampleElimination�P ;N ;E;RP ;RN ;RE�

Input: P, N ± tables of positive and negative examples, L ± set of literals
Output: RP, RN ± reduced tables of positive and negative examples,

RE ± reduced set of examples
RP  P , RN  N , RL L

for 8 ei 2 RE, i 2 �1; jEj� do

if positive ei is covered by any ej 2 RP then

eliminate ei from RE
eliminate row ei from RP table

if negative ei is covered by any ej 2 RN then

eliminate ei from RE
eliminate row ei from RN table

endfor

The complexity of Algorithm 1 is O�jLj2 � jEj� while the complexity of Algorithm 2
is O�jLj � jEj2� where jLj is the number of literals and jEj is the number of examples.

Algorithm 3. Iterative elimination of literals and examples
Procedure IterativeElimination�E;CL; L;RE;RL�

Given: CL (costs of literals in L )
Input: E (initial example set), L (initial literal set)
Output: RE ± reduced table of positive and negative examples,

RL ± reduced set of literals
build P and N tables from E
reset loop counter i 0
repeat

call LiteralElimination�P ;N ;CL;L;RP ;RN ;RL�
if i > 0 and RL � L then exit repeat loop
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L RL, P  RP , N  RN
call ExampleElimination�P ;N ;E;RP ;RN ;RE�
if RE � E then exit repeat loop
E RE, P  RP , N  RN
i i� 1

endrepeat

Algorithm 3 combines Algorithms 1 and 2 into an iterative loop in which both ir-
relevant literals and examples are eliminated. It must be noted that the elimination
process must be iterative because example eliminations can enable that some literals
become irrelevant although they have not been irrelevant before. The same is true for
literals. After literal eliminations some examples can become irrelevant although
they have not been irrelevant before. Note that the ®nal result of irrelevant literal
and example elimination is unique regardless of the order of eliminations. It is not
important whether Algorithm 3 starts with literal or example eliminations. The order
of eliminations does not matter because every literal that is irrelevant remains irrel-
evant also after some example eliminations. The same is true for examples.

5.3. An example run of elimination algorithms

To illustrate an application of the presented theory of relevance and a run of the
elimination algorithms consider again the example of learning an intensional de®ni-
tion of the relation daughter, introduced in Section 3.2, where the LINUS transfor-
mation results in Table 2.

As already discussed in Example 2 of Section 4.1 and more formally in Section
4.4, for our study of relevance the negative counterparts of the generated literals
Lp need to be considered as well, which gives rise to nine more literals Ln �
ff �X �, f �Y �, . . .g in the transformed table of examples E for the daughter learning
problem. A part of the truth-value table for only 6 out of 18 literals constituting
L � Lp [ Ln is presented in Table 5.

In Table 6, Table 5 is transcribed into the form of P and N tables. This relation
learning problem will be used to illustrate the process of literal and example elimina-
tion. In the example it is assumed that all literals have equal costs.

From Table 6 it can be noticed that literals f �X �, m�Y �, and p�Y ;X � are useless,
either having 0 values in all P rows or 0 values in all N rows. In the starting P and N
tables there are in total 13 such literals. After their elimination, ®ve literals remain.
These literals are presented in Table 7.

It can now be noticed that columns f �X � and m�X � are identical as well as col-
umns m�Y � and f �Y �. As identical columns cover each other, the negative literals

Table 5

Six out of 18 literals in the transformed example set for learning the daughter relationship

C Examples d�X ; Y � Literals

f �X � f �X � m�Y � m�Y � p�Y ;X � p�Y ;X �
� p1 true false false true true false
� p2 true false true false true false
	 n1 false true false true true false
	 n2 true false false true false true

232 N. Lavra�c et al. / J. Logic Programming 40 (1999) 215±249



can be eliminated from the P and N tables of Table 7. In this way, Table 8 with only
3 columns is obtained.

It is interesting to notice that only after these column eliminations have been per-
formed, there is ®nally a possibility also for a row elimination. Example p2 can be
eliminated since it is covered by example p1. The result is given in Table 9.

Now there is a possibility for an additional column elimination because the literal
m�Y � has value 0 in all rows of the P table. The ®nal P and N tables with only two
columns and three rows are presented in Table 10.

In the selected example of relation learning, the two literals that remain after all
eliminations represent the minimal subset of literals that needs to be used in hypoth-
esis construction. Actually, by now running a propositional learner within LINUS,
e.g., CN2 [4], the following if±then rule can be trivially induced:

daughter�X ; Y � � true if � female�X � � true� ^ � parent�Y ;X � � true�

Table 8

P and N tables after column eliminations

Examples Literals

f �X � m�Y � p�Y ;X �
P
p1 1 0 1

p2 1 1 1

N
n1 1 1 0

n2 0 1 1

Table 7

P and N tables after the elimination of useless literals

Examples d�X ; Y � Literals

f �X � m�Y � p�Y ;X � f �Y � m�X �
P
p1 1 0 1 0 1

p2 1 1 1 1 1

N
n1 1 1 0 1 1

n2 0 1 1 1 0

Table 6

A part of P and N tables for the daughter relationship problem

Examples d�X ; Y � Literals

f �X � f �X � m�Y � m�Y � p�Y ;X � p�Y ;X �
P

p1 1 0 0 1 1 0

p2 1 0 1 0 1 0

N

n1 1 0 1 0 0 1

n2 0 1 1 0 1 0
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If transformed to clausal form as done in LINUS, the resulting hypothesis is as fol-
lows:

daughter�X ; Y �  female�X �; parent�Y ;X �
Notice that in our example the task of an inductive learning algorithm has been

signi®cantly simpli®ed due to irrelevant literal and example elimination.

6. Utility study of literal reduction for LINUS

The experiments described in this section study the usefulness of the irrelevant lit-
eral elimination algorithm REDUCE used as part of the LINUS transformation al-
gorithm.

6.1. Experimental settings and domains

Three settings are used, in which the input to the irrelevant literal elimination al-
gorithm is a set of examples E described as truth-value tuples of the following sets of
literals:

Setting 1: Use LINUS to generate positive literals Lp called features. Select from Lp

the set of relevant features RLp.
Setting 2: Take Lp from Setting 1. Generate negative literals, denoted by

Ln � f:l j l 2 Lpg. Select from literals L � Lp [ Ln the set of relevant literals
RL � RLp [ RLn.

Setting 3: Take L � Lp [ Ln from Setting 2. Select from L the set of relevant fea-
tures RF. To do so, ®rst select relevant literals RL as in Setting 2, and then construct
the reduced set of features including all the features which have at least one of their
literals in the reduced literal set: RF � RLp [ RLnp, where RLnp � fl j :l 2 RLng.

Table 10

Reduced P and N tables

Examples Literals

f �X � p�Y ;X �
P
p1 1 1

N
n1 1 0

n2 0 1

Table 9

P and N tables after row elimination

Examples Literals

f �X � m�Y � p�Y ;X �
P
p1 1 0 1

N
n1 1 1 0

n2 0 1 1
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The experimental setting was designed with the goal to verify that Setting 3 is the
best setting when using LINUS for solving ILP problems, assuming that the propo-
sitional learner used in LINUS is able to generate hypotheses with negated features;
if this is not the case, Setting 2 is the best setting for LINUS. It is also shown that
Setting 1, in which negative literals are not generated and in which features are elim-
inated as literals, may lead to inappropriate reductions.

The performance of the literal reduction algorithm REDUCE is evaluated on
learning tasks taken from Ref. [19] (the original references for the individual tasks
can be found in this source). The ®rst three domains involve a very small number
of examples: family relationships, arches and the Eleusis card game consisting of
three di�erent training sets, whereas the fourth domain, the King±Rook±King chess
endgame, involves ®ve training sets of 100 examples each as well as one training set
of 5000 examples.

Each domain is described by the target predicate, predicates in the background
knowledge, and the list of positive literals (features) constructed by LINUS (this
set is denoted by Lp).

6.2. Learning family relationships

In the family relationships learning task, two stylized families of 12 members each
are given, as shown in Fig. 1, taken from Ref. [35] (®rst described by Hinton in 1986).

The task is to learn the de®nition of the target predicate mother�A;B� from exam-
ples of this relation and the background relations father�X ; Y �; wife�X ; Y �; son�X ; Y �
and daughter�X ; Y �. Negative examples are generated under the closed-world as-
sumption. There are 10 positive and 50 negative examples.

LINUS constructs eight features father�A;B�; father�B;A�; daughter�A;B�;
daughter�B;A�; son�A;B�; son�B;A�; wife�A;B�; wife�B;A�. In addition, LINUS crea-
tes 18 senseless features, father�A;A�; father�B;B�; daughter�A;A�; daughter�B;B�;
son�A;A�; son�B;B�; wife�A;A�; wife�B;B�, which are irrelevant by de®nition since
they are false for all the training examples.

From 10 positive and 50 negative examples, LINUS induces the following hypoth-
esis [19].

Fig. 1. Two family trees, where � means married to.
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mother�A;B�  daughter�B;A�
not father�A;B�

mother�A;B�  not daughter�B;A�
son�B;A�
not father�A;B�

Setting 1: Lp contains 16 features. Only two features are relevant, RLp �
fdaughter�B;A�; son�B;A�g, all others are eliminated. These two features do not suf-
®ce for inducing the target hypothesis. Since the negative literals are not available,
the algorithm eliminates the feature father�A;B� which is needed to induce the above
hypothesis.

Setting 2: L contains 32 literals. The following eight literals are relevant: RL �
fdaughter�B;A�; son�B;A�; not father�A;B�; not father�B;A�; not son�A;B�;
not wife�A;B�; not wife�B;A�; not daughter�A;B�g. The other eight literals are elimi-
nated as irrelevant. All the literals needed for hypothesis construction remain in
the relevant literal set, including not father�A;B�.

Setting 3: There are eight relevant features: RF � fdaughter�B;A�; son�B;A�;
father�A;B�; father�B;A�; daughter�A;B�; son�A;B�;wife�A;B�;wife�B;A�g. Again, all
the features needed for hypothesis construction remain in the relevant feature set, in-
cluding not father�A;B�.

In Settings 2 and 3, eight literals out of 32 are relevant. Irrelevant literal elimina-
tion is not particularly e�ective due to a large amount of negative examples which
prevent the elimination of negative literals.

6.3. Learning the concept of an arch

In this example, taken from Ref. [35] (®rst described by Winston in 1975), two giv-
en objects are arches (positive examples: the ®rst and fourth object) and others are
not (negative examples). The original problem consisted of two positive and two neg-
ative examples (the ®rst four objects in Fig. 2).

For inducing the target relation arch�A;B;C�, stating that A, B and C form an
arch with columns A and B and lintel C, the following background relations
were used: supports�X ; Y �; left of �X ; Y �; touches�X ; Y �; brick�X �; wedge�X � and
parallelepiped�X �.

LINUS constructs the following 27 features: supports�A;B�; supports�A;C�;
supports�B;A�; supports�B;C�; supports�C;A�; supports�C;B�; leftof �A;B�;
leftof �A;C�; leftof �B;A�; leftof �B;C�; leftof �C;A�; leftof �C;B�; brick�A�;
brick�B�; brick�C�; touches�A;B�; touches�A;C�; touches�B;A�; touches�B;C�;
touches�C;A�; touches�C;B�; wedge�A�; wedge�B�; wedge�C�; parallelepiped�A�;
parallelepiped�B�; parallelepiped�C�. In addition, nine senseless features are con-
structed: supports�A;A�; supports�B;B�; . . . , touches�C;C�.

Fig. 2. Arches and near misses.
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6.3.1. First example set
From two positive and two negative examples, LINUS induces the following hy-

pothesis [19].

arch�A;B;C�  supports�A;C�
not touches�A;B�

Setting 1: Only two features are relevant: supports�A;C� and wedge�C�: The fea-
ture touches�A;B� is eliminated despite the fact that it is needed for hypothesis for-
mation. Similar as in the family example, the feature that is (but should not have
been) eliminated appears in the hypothesis as a negative literal.

Setting 2: RL � fsupports�A;C�; wedge�C�, not touches�A;B�g: All the needed liter-
als remain available after the elimination.

Setting 3: There are again three relevant features: supports�A;C�; wedge�C� and
touches�A;B�: All the needed features remain available.

6.3.2. Second example set
From the entire set of examples shown in Fig. 2, consisting of two positive and

four negative examples, LINUS induces the following hypothesis [19].

arch�A;B;C�  supports�A;C�
supports�B;C�
not touches�A;B�

Setting 1: Three features are relevant: supports�A;C�, supports�B;C� and wedge�C�:
The feature touches�A;B� is eliminated despite the fact that it is needed for hypothesis
formation.

Setting 2: RL � fsupports�A;C�; supports�B;C�, wedge�C�, not touches�A;B�g: All
the needed literals remain available after the elimination.

Setting 3: There are four relevant features: supports�A;C�; supports�B;C�,
wedge�C� and touches�A;B�: Again, all the needed features remain available.

6.4. Learning rules that govern card sequences

The Eleusis learning problem, taken from Ref. [35], was ®rst described by Diette-
rich and Michalski in 1986. In the Eleusis card game, the dealer invents a secret rule
specifying conditions under which a card can be added to a sequence of cards. The
players attempt to add a card to the current sequence. If a card is a legal successor, it
is placed to the right of the last card, otherwise it is placed under the last card. The
horizontal main line represents the sequence as developed so far, while the vertical
side lines show incorrect plays. Three layouts, reproduced from Ref. [35], are given
in Fig. 3.

Each card other than the ®rst in the sequence provides an example for learning the
target relation can follow. The example is a positive example if the card appears in
the main line, and it is a negative example if it is in a side line.

In all the layouts, the target predicate is can follow�R; S; PR; PS;CS;CL�, where
arguments denote: a card of R ± rank and S ± suit, that follows a card of PR ± pre-
vious rank and PS ± previous suit, CS ± number of consecutive cards in same suit,
CL ± number of consecutive cards in same color.
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Background relations that can be used in induced clauses are the follow-
ing: precedes rank�X ; Y �, precedes suit�X ; Y �, lower rank�X ; Y �, same color�X ; Y �,
face�X �, odd rank�X �, and odd num�X �.

LINUS generates 14 features: precedes rank�R; PR�; precedes rank�PR;R�;
precedes suit�S; PS�; precedes suit�PS; S�; face�R�; face�PR�; lower rank�R; PR�;
lower rank�PR;R�; same color�S; PS�; same color�PS; S�; odd rank�R�; odd rank�PR�;
odd num�CS�; odd num�CL�; as well as eight senseless features.

6.4.1. First layout
In the ®rst layout, the intended dealer's rule is: `Completed color sequences must

be of odd length and a male card may not appear next to a female card'. LINUS
cannot discover the intended rule, because no information on the gender of cards
is encoded in the background relations. From 17 positive and 9 negative examples,
LINUS induces the following clauses [17].

can follow�R; S; PR; PS;CS;CL�  same color�S; PS�
can follow�R; S; PR; PS;CS;CL�  odd num�CL�; odd rank�R�
can follow�R; S; PR; PS;CS;CL�  not face�R�; lower rank�PR;R�

Setting 1: All the features are kept as relevant except for same color�PS; S�; which
is a symmetric variant of same color�S; PS�:

Setting 2: Out of 44 literals, 21 literals are relevant. In addition to the
initial 13 literals as in Setting 1, RL includes literals not precedes rank�R; PR�; not
precedes rank�PR;R�; not precedes suit�S; PS�; not precedes suit�PS; S�; not face�R�;
not face�PR�; not odd�R�; not odd�PR�:

Setting 3: Relevant literals are identical as in Setting 1.
In all the settings, all literals needed for hypothesis formation are available as rel-

evant.

Fig. 3. Three layouts of the Eleusis card game.
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6.4.2. Second layout
In the second layout, given 24 positive and 5 negative examples, LINUS correctly

induces the intended rule: `Play alternate face and non-face cards' [19].

can follow�R; S; PR; PS;CS;CL�  face�R�; not face�PR�
can follow�R; S; PR; PS;CS;CL�  face�PR�; not face�R�

Setting 1: Nine features are relevant, including all features needed for hypothesis
formation: lower rank�R; PR�; precedes suit�S; PS�; precedes suit�PS; S�; face�R�;
face�PR�; same color�S; PS�; odd�R�; odd�PR�; odd�CL�:

Setting 2: Out of 44 literals, 18 literals are relevant: in addition to the literals of
Setting 1, the following literals are relevant: not precedes rank�PR;R�; not
precedes suit�S; PS�; not precedes suit�PS; S�; not face�PR�; not odd�R�; not odd�PR�;
not odd�CS�; not odd�CL�; not same color�S; PS�:

All the literals, which are used in the hypothesis are listed here, although not all
are kept in the appropriate form. For example, not face�R� is eliminated because it is
covered by the literal lower rank�R; PR�: This is acceptable: the induced hypothesis
would look di�erent but would cover the same positive examples (if the previous
card is a face card, the next one must not be a face card, therefore it has a lower
rank). This situation occurs due to a small number of negative examples.

Setting 3: Eleven features are relevant: nine features of Setting 1, as well as
precedes rank�PR;R� and odd�CS�. All features needed for hypothesis formation
are available as relevant.

6.4.3. Third layout
In the third layout, the intended rule is: `Play a higher card in the suit preceding

that of the last card; or, play a lower card in the suit following that of the last card'.
LINUS discovers an approximation of the rule: `Play a higher or equal card in the
suit preceding that of the last card; or, play a lower card in the suit following that of
the last card'. From 8 positive and 21 negative examples, LINUS generates the fol-
lowing hypothesis [19]:

can follow�R; S; PR; PS;CS;CL�  lower rank�R; PR�; precedes suit�PS; S�
can follow�R; S; PR; PS;CS;CL�  lower rank�PR;R�; precedes suit�S; PS�

Setting 1: Three features that are are eliminated are precedes rank�R; PR�;
same color�PS; S�, and odd�CS�, the others are relevant.

Setting 2: There are 17 relevant literals: 11 features from Setting 1, and in addi-
tion: not precedes rank�R; PR�; not precedes rank�PR;R�; not face�R�; not face�PR�;
not same color�S; PS�; not odd�R�.

Setting 3: There are 12 relevant features: 11 features from Setting 1 and
precedes rank�R; PR�.

In all the settings, all literals needed for hypothesis formation are available as rel-
evant.

6.5. Learning illegal chess endgame positions

In the chess endgame domain White King and Rook vs. Black King, taken from
[35] (®rst described in Ref. [29]), the target relation illegal�A;B;C;D;E; F � states
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whether a position where the White King is at ®le and rank �A;B�, the White Rook at
�C;D� and the Black King at �E; F � is an illegal White-to-move position. For ex-
ample, illegal�g; 6; c; 7; c; 8� is a positive example, i.e., an illegal position.

Given the background knowledge predicates, LINUS creates the following 36 fea-
tures.

Twelve for equal/2: equal�A;C�; equal�A;E�; equal�C;A�; equal�C;E�; equal�E;A�;
equal�E;C�; equal�B;D�; equal�B; F �; equal�D;B�; equal�D; F �; equal�F ;B�;
equal�F ;D�:
Six for adj ®le/2: adj file�A;C�; adj file�A;E�; adj file�C;A�; adj file�C;E�;
adj file�E;A�; adj file�C;E�:
Six for adj rank/2: adj rank�B;D�; adj rank�B; F �; adj rank�D;B�; adj rank�D; F �;
adj rank�F ;B�; adj rank�F ;D�:
Six for less ®le/2: less file�A;C�; less file�A;E�; less file�C;A�; less file�C;E�;
less file�E;A�; less file�E;C�:
Six for less rank/2: less rank�B;D�; less rank�B; F �; less rank�D;B�;
less rank�D; F �; less rank�F ;B�; less rank�F ;D�:

In addition, LINUS creates 18 senseless features such as equal�A;A�, equal�B;B�,
. . . , less rank�F ; F �, which are irrelevant by de®nition since they are false for all the
training examples.

By considering both positive and negative literals, this leads to examples described
by 108 literals.

In this experiment, the de®nition of the target relation illegal�A;B;C;D;E; F � is
induced from ®ve sets of 100 examples each. The numbers of positive examples
are 49, 33, 32, 39, 37, respectively. The hypothesis is the same for all ®ve sets of ex-
amples:

illegal�A;B;C;D;E; F �  equal�C;E�
illegal�A;B;C;D;E; F �  equal�D; F �
illegal�A;B;C;D;E; F �  adj file�A;E�; equal�B; F �
illegal�A;B;C;D;E; F �  adj file�A;E�; adj rank�B; F �
illegal�A;B;C;D;E; F �  equal�A;E�; adj rank�B; F �
illegal�A;B;C;D;E; F �  equal�A;E�; equal�B; F �

These clauses may be paraphrased as: `A position is illegal if the Black King is on
the same rank or ®le as (i.e., is attacked by) the Rook, or the White King and the
Black King are next to each other, or the White King and the Black King are on
the same square'. Although these clauses are neither consistent nor complete, they
correctly classify 98.5% of the unseen cases.

The overall results of literal elimination are shown in Table 11. In all the ®ve
domains, Setting 3 results in 24 features; all the symmetric features of the initial
set of 36 features are eliminated, for example: equal�A;C� contains the same in-
formation as equal�C;A�, hence one of them is irrelevant. In two domains, in Set-
ting 1 one additional feature is eliminated: either adj file�C;E� or adj rank�B;D�.
Setting 2 keeps 41±45 literals, depending on the domain. The individual results
for the ®ve training sets are given in Appendix. In all the settings, all the needed
literals remain available in the relevant literal set.
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6.6. Summary and further work

Table 11 summarizes the experimental results. The meaning of the abbreviations
are as follows: Ex ± number of examples, Pos ± number of positive examples, Setting
1±3 ± reductions of literals in di�erent settings.

The e�ectiveness of the literal elimination algorithm REDUCE depends on sever-
al parameters. The most important is the shape of table E of examples described by
literals L. If this table is high (large number of examples in E ), the chance for literal
coverage is low, therefore not many literals will be eliminated as irrelevant. On the
other hand, if the table is wide, there are more literals and the chance of coverage
is higher. The algorithm is more e�ective when there are many literals and a small
number of examples (e.g., the arch domain). The minimal result achieved, regardless
of the shape of the table, is that REDUCE will always discover and eliminate redun-
dant literals which are senseless or symmetric.

In addition to experiments concerning irrelevant literal elimination, and experi-
ment involving also irrelevant example elimination was performed on an enlarged
training set of 5000 examples of King±Rook±King chess endgame positions, de-
scribed by 108 literals. In this experiment, the application of example and literal
elimination algorithms reduces the number of examples from 5000 to 1216, and
the number of literals from 108 to 48. The reduction in the number of examples is
signi®cant, whereas the drop from 108 to 48 literals is only due to the elimination
of senseless literals, and symmetric literals for predicates equal=2, adj file=2 and
adj rank=2. For example, literal equal�X ; Y � is symmetric which means that
equal�X ; Y � � equal�Y ;X �, therefore only one of these two literals should remain
in the relevant literal set. Notice that this reduction could have been achieved in LI-
NUS itself by declaring the predicate equal=2 as symmetric.

In further work, problems with higher dimensionality will be studied, for which
literal generation and selection should be interleaved. The algorithm REDUCE
can easily be reimplemented as part of the LINUS and DINUS algorithms to enable
incremental literal generation and selection: every time a new literal is constructed,
an attempt should be made to eliminate this literal or one of the previously intro-
duced literals. This would signi®cantly reduce the complexity of the LINUS and
DINUS transformation approaches to ILP.

Table 11

Results of the utility study for LINUS

Domain Ex Pos Setting 1 Setting 2 Setting 3

Family 60 10 8� 8! 2 16� 16! 8 16� 16! 8

Arch1 4 2 27� 9! 2 54� 18! 3 54� 18! 3

Arch2 6 2 27� 9! 3 54� 18! 4 54� 18! 4

Eleusis1 26 17 14� 8! 13 28� 16! 21 28� 16! 13

Eleusis2 29 24 14� 8! 9 28� 16! 18 28� 16! 11

Eleusis3 29 8 14� 8! 11 28� 16! 17 28� 16! 12

Krk100-1 100 49 36� 18! 24 72� 36! 42 72� 36! 24

Krk100-2 100 33 36� 18! 23 72� 36! 41 72� 36! 24

Krk100-3 100 32 36� 18! 24 72� 36! 42 72� 36! 24

Krk100-4 100 39 36� 18! 24 72� 36! 45 72� 36! 24

Krk100-5 100 37 36� 18! 23 72� 36! 41 72� 36! 24
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The switch from the LINUS to the DINUS learning framework can be seen as bias
shift (notice that DINUS is not restricted to constrained clauses but allows new vari-
ables in clause body to be introduced by determinate literals). Using the incremental
literal generation and selection procedure, one could start by generating literals which
do not introduce new variables ®rst, and eliminating the ones that are irrelevant. If
there is no solution to the learning problem in this language bias (i.e., if the set of lit-
erals generated is not discriminating), one might switch to a weaker language bias
within DINUS (with a greater depth of new variables) and continue the incremental
generation and selection of literals until a discriminating literal set is found.

7. Reducing the search of re®nement graphs

This section studies the utility of literal elimination in the search of re®nement
graphs.

7.1. Re®nement graphs

Recall that learning can be viewed as search, either heuristic or exhaustive [27].
The states in the search space are descriptions in the hypothesis space de®ned by
the language of hypotheses L, and the goal is to ®nd one or more states satisfying
the quality criterion (e.g., completeness and consistency). A learner can be described
in terms of the structure of its search space, its search heuristics and search strategy.

In this study, the structure of the hypothesis space is de®ned by a specialization
operator which, for a selected language bias L and given background knowledge
B, de®nes the so-called re®nement graph.

Let L be a set of program clauses. We assume the following de®nitions, adapted
from Ref. [38].

De®nition 10. Clause c is at least as general as clause c0 (c6 c0) if c h-subsumes c0, i.e.,
if there exists a substitution h, such that ch � c0. Clause c is more general than c0

(c < c0) if c6 c0 holds and c06 c does not. In this case, we say that c0 is a specializa-
tion of c.

De®nition 11. A re®nement operator q is a mapping from L to ®nite subsets of L,
q : L! P�L�, such that all clauses in q�c� are specializations of the clause c.

De®nition 12. Let q be a re®nement operator and c and c0 two clauses in L. Clause c0

is a re®nement of clause c if c0 is a specialization of c, i.e., if c0 2 q�c�.

De®nition 13. A re®nement graph is a directed, acyclic graph in which nodes are pro-
gram clauses and arcs correspond to re®nement operations, i.e., there is an arc from
c to c0, if c; c0 2L, and c0 2 q�c�.

7.2. A simpli®ed re®nement operator for DHDB clauses

In this study we consider a simpli®ed re®nement operator, de®ned as follows.
Clause c0 is a re®nement of clause c, i.e., c0 2 q�c�, if:
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1. Clause c � � and c0 � t�X1;X2; . . . ;Xn�  , where � stands for the empty clause
and X1;X2; . . . ;Xn are distinct variables of types T1; T2; . . . ; Tn as speci®ed for the
arguments of target predicate t.

2. Clause c is a DHDB clause and c0 is obtained from c by adding to the body of c
literals qi�Y1; Y2; . . . ; Yni� or not qi�Y1; Y2; . . . ; Yni�, where Y1; Y2; . . . ; Yni appear in c
and are of the corresponding types speci®ed for the arguments of predicate qi.
Notice that the operator is not a general re®nement operator for constrained

DHDB clauses since it does not introduce literals (and negations of literals) of the
form Xj � Xs, Xj � v and does not deal with function symbols [19].

In addition to the above re®nement operator q, consider a modi®ed re®nement
operator qR which is identical to q except that it does not generate re®nements c0,
c0 2 q�c�, which would have been obtained by adding to the body of clause c a literal
qi�Y1; Y2; . . . ; Yni� or not qi�Y1; Y2; . . . ; Yni� which is irrelevant w.r.t. the set of literals
occuring in the body of c.

7.3. Experimental setting and results of experiments

In the experiments, a program for searching re®nement graphs was adapted from
Ref. [8]. The modi®ed program allows for empirical (batch) learning by performing
breadth-®rst exhaustive search. Search of the re®nement graph stops (clause c is not
re®ned) if:
1. clause c covers no positive example (useless clause),
2. clause c covers no negative example (consistent clause).

A clause covering no positive example is useless and is discarded. A clause cover-
ing no negative example is a consistent clause. The algorithm outputs all consistent
clauses as possible hypothesis clauses, and eliminates the covered positive examples
from the training set.

To test whether the search of re®nement graphs can be reduced, the number of
nodes generated by the re®nement operator q are compared with the number of
nodes generated by the re®nement operator qR.

Experiments are performed on the problem domains described in Section 6. Table
12 summarizes the experimental results. The meaning of the abbreviations are as fol-
lows: Depth ± depth of the re®nement graph (max. number of body literals),
All ± number of all nodes, Rest ± number of nodes to be re®ned at the next depth
of the re®nement graph �Rest � Allÿ Useless ÿ Consistent�; AllRÿ number of
all nodes, ElimRÿ number of eliminated nodes due to irrelevant literals, RestRÿ
number of nodes to be refined at the next depth of the refinement graph (RestR �
AllR ÿ UselessR ÿ ElimR ÿ ConsistentR). Columns with subscript R denote the
results using the re®nement operator qR, and the others are the results using the
operator q.

Notice that useless clauses are due to irrelevant literals that are false for all
positive examples. This type of irrelevance is eliminated both in the q and the
qR re®nement graph search. On the other hand, eliminated ElimR nodes which
are due to irrelevant literals are only eliminated in the re®nement graph con-
structed by qR.

Notice that the ®rst level of the re®nement (Depth � 1) results in a list of literals
that is identical to the list of literals generated in Setting 2 of the LINUS transfor-
mation (see Section 6).
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As shown in Table 12, irrelevant literal elimination is e�ective in all the domains,
since it signi®cantly reduces the size of re®nement graphs. To see the e�ectiveness of
reduction, see the column ElimR, and compare All vs. AllR, and Rest vs. RestR in rows
Total, as well as in rows above.

The most interesting domain is Arch2, i.e., the second example set of the arches
learning problem, since the induced hypothesis contains a clause with three literals
in the body. This involves the search of the re®nement graph at depth 3, where the stop-
ping of further specializations at depths 1 and 2 has the largest e�ect: instead of check-
ing 103104 nodes (All ) at depth 3, the search in the reduced graph involves only 216
nodes (AllR). Notice that the number of All nodes at a certain depth, say depth 3, de-
pends on the Rest of nodes at the previous depth and the branching factor, where
the branching factor is equal to All nodes at depth 1. For instance, in the Arch2 prob-
lem, 103104 � 1432� 72, and for the reduced case 216 � 3� 72. This con®rms the in-
tuition that with larger depth, irrelevant literal elimination will be more e�ective.

7.4. Summary and further work

Results of the experiments in the simpli®ed re®nement graph search setting used
in this work show that the number of nodes in a re®nement graph can be substan-
tially reduced due to irrelevant literal elimination.

The experiments test the e�ectiveness of irrelevant literal elimination in a proce-
dure for exhaustive searching of a re®nement graph. We are aware of the limitations

Table 12

Results of re®nement graph reduction experiments

Domain Depth All Rest AllR ElimR RestR

Family 1 32 18 32 10 8

2 576 312 256 125 13

Total 608 330 288 135 21

Arch1 1 72 36 72 35 2

2 2592 1292 144 71 0

Total 2664 1328 216 106 2

Arch2 1 72 38 72 34 4

2 2736 1432 288 146 3

3 103104 46638 216 107 0

Total 105912 48108 576 287 7

Eleusis1 1 44 34 44 15 20

2 1496 896 880 557 1

Total 1540 930 924 572 21

Eleusis2 1 44 33 44 16 17

2 1452 929 748 494 28

Total 1496 962 792 510 45

Eleusis3 1 44 34 44 17 17

2 1496 992 748 470 20

Total 1540 1026 792 487 37

Krk1 1 108 86 108 48 40

2 9288 6846 4320 2840 261

Total 9396 6932 4428 2888 301
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of the simpli®ed re®nement graph search setting, which is in our experiments limited
to the language of function-free constrained DHDB clauses. In further work the lim-
itations of the language will be relaxed, and the irrelevant literal elimination proce-
dure adapted and incorporated either in an existing, or newly developed, re®nement
graph search procedure, preferably using an optimal re®nement operator (with no
node duplications). In addition, bias shift will be studied by ®rst doing the re®ne-
ments within a limited language bias and then relaxing the bias if a consistent hy-
pothesis cannot be found.

Complete search procedures have recently again gained popularity, for instance in
Progol [30] which has been used in many successful data mining applications. Due to
complete search, limited by bottom clauses generated for randomly selected positive
examples, Progol is slow and can induce only short clauses containing few body lit-
erals. It is planned to study the possible improvements of the Progol re®nement op-
erator by disregarding re®nements of nodes containing irrelevant literals.

In further work our plan is to investigate also irrelevant literal elimination in the
heuristic search of re®nement graphs, using the heuristics developed in the literal
minimization algorithm [20,21], as well as the noise-handling based on the elimina-
tion of potentially noisy examples [11,10].

8. Conclusion

This work is a study of the problem of relevance for inductive learners, applicable
both in propositional learning and in the LINUS transformation approach to induc-
tive logic programming. The only condition for irrelevant literal elimination is that
the learning algorithm uses some sort of minimization in the search of the hypothesis
space. This is not a real limiting condition for existing learning systems. In contrast
to this, the elimination of irrelevant training examples changes the statistical proper-
ties of the problem domain and must not be used when learners using statistical mea-
sures are used for hypothesis construction.

The problem of relevance is encountered by every inductive learner. Basically all
learners are concerned with the selection of `best' literals among the relevant literals.
The presented theory of relevance is aimed at pointing out which literals constitute a
set of relevant literals and which literals are irrelevant and can be disregarded, with-
out even entering the learning process. We are thus concerned with ®nding globally
relevant/irrelevant literals w.r.t. the entire set of training examples. This is important
since the elimination of globally irrelevant literals guarantees that literal elimination
will not harm the hypothesis formation process, i.e., that during the reduction of the
hypothesis space the optimal problem solution will not be eliminated.

Although most of this study is devoted to the problem of relevance in preprocess-
ing of the set of training examples, the results of this study are applicable also in the
learning process itself, i.e., in the search of re®nement graphs for ILP [38,35,30].

The presented work is also a step towards the detection of interesting chunks of
knowledge. In our case these chunks (cliches) are actually the reduced training exam-
ples themselves, if described in the hypothesis language. Detection of these rudimen-
tary cliches may be seen as a step towards easier predicate invention. Namely, the
result of the reduction (described in this work) and minimization (described in pre-
vious work by the authors [9,20]) is a minimal set of literals needed for forming a
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concept description. By eliminating the entire set of literals ®rst to the reduced set,
and further to the minimal set of literals, the complexity of the predicate invention
task may considerably be reduced. This is one of the topics of further research.

This study is also a step towards a better understanding of the notion of relevance
for inductive concept learning. We are aware of some assumptions and simpli®ca-
tions which need to be elaborated in further work since they may hinder the appli-
cation of the proposed approach in real-life applications. For example, we do not
consider missing values of training examples. In this work we also disregard the
problem of noise and assume that the goal of a learner is to ®nd a consistent and
complete DNF description. The problem of noise is successfully solved in related
work of the authors [11,10], whereas the limitation to DNF learning is solved in
the ILLM algorithm which learns combined CNF/DNF descriptions [9].

Some of the important practical aspects such as the costs of literals are taken into
account in this work, while disregarded by other authors concerned with feature se-
lection [2,13,16,24,39]. A case study of cost-sensitive feature elimination in data pre-
processing for a hybrid genetic decision tree induction algorithm RL-ICET on two
East±West Challenge problems [21,22] shows that cost-sensitive elimination of irrel-
evant features can substantially improve the e�ciency of learning and can reduce the
costs of induced hypotheses.
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Appendix: Detailed results of literal elimination in ®ve King±Rook±King chess

endgame problems

This section presents results of irrelevant literal elimination for the ®ve training
sets of the chess endgame domain White King and Rook vs. Black King, presented
in Section 6.5.

First example set

There are 49 positive examples in this set.
Setting 1: The following features are eliminated: equal�C;A�; equal�E;A�;

equal�E;C�; equal�D;B�; equal�F ;B�; equal�F ;D�; adj file�C;A�; adj file�E;A�;
adj file�C;E�; adj rank�D;B�; adj rank�F ;B�; adj rank�F ;D�. The other features
are relevant. As we can see, only symmetric features are eliminated.
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Setting 2: RL contains 42 literals: equal�A;C�; equal�A;E�; equal�C;E�;
equal�B;D�; equal�B; F �; equal�D; F �; adj file�A;C�; adj file�A;E�; adj file�C;E�;
adj rank�B;D�; adj rank�B; F �; adj rank�D; F �; less file�A;C�; less file�A;E�;
less file�C;A�; less file�E;A�; less rank�B;D�; less rank�B; F �; less rank�D;B�;
less rank�F ;B�; not equal�A;C�; not equal�A;E�; not equal�B;D�; not equal�B; F �;
not adj file�A;C�; not adj file�A;E�; not adj file�C;E�; not adj rank�B;D�;
not adj rank �B; F �; not adj rank�D; F �; not less file�A;C�; not less file�A;E�;
not less file�C;A�; not less file�C;E�; not less file�E;A�; not less file�E;C�;
not less rank�B;D�; not less rank�B; F �; not less rank�D;B�; not less rank�D; F �;
not less rank�F ;B�; not less rank �F ;D�:

Setting 3: The result in Setting 3 is identical to the one in Setting 1.

Second example set

There are 33 positive examples in this set.
Setting 1: RLp contains 23 features. The result is the same as in the ®rst example set

except that feature adj rank�B;D� is eliminated as well.
Setting 2: Results in Setting 2 are the same as in the ®rst example set. The only

di�erence is that literal adj rank�B;D� is also eliminated.
Setting 3: The result in Setting 3 is identical to the one in the ®rst example set.

Third example set

There are 32 positive examples in this set. Results in all settings are identical to the
results in the ®rst example set.

Fourth example set

There are 39 positive examples in this set.
Setting 1: The result in Setting 1 is the same as in the ®rst example set.
Setting 2: Results in Setting 2 are similar as in the ®rst example set. In addition to

the 42 literals from the ®rst example set REDUCE keeps literals less rank�D; F �;
less rank�F ;D� and notequal�D; F �.

Setting 3: Results in Setting 3 are identical to those in the ®rst example set.

Fifth example set

There are 37 positive examples in this set.
Setting 1: The result in Setting 1 is similar to that in the second example set. In-

stead of feature adj rank�B;D� REDUCE eliminates feature adj file�C;E�.
Setting 2: The result in Setting 2 is similar as in the ®rst example set. Instead of

literal adj rank�B;D�, literal adj file�C;E� is eliminated.
Setting 3: The result in Setting 3 is identical to the one in the ®rst example set.
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