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Abstract

Decision table decomposition is a machine learning approach that decomposes a
given decision table into an equivalent hierarchy of decision tables. The approach
aims to discover decision tables that are overall less complex than the initial one, po-
tentially easier to interpret, and introduce new and meaningful intermediate concepts.
Since an exhaustive search for an optimal hierarchy of decision tables is prohibitively
complex, the decomposition uses a suboptimal iterative algorithm that requires the
so-called partition selection criterion to decide among possible candidates for de-
composition. This paper introduces two such criteria and experimentally compares
their performance with the criteria originally used for the decomposition of Boolean
functions. Two of these criteria are additionally used to assess the overall complex-
ity of discovered decision tables. The experiments highlight the differences between
the criteria, but also show that in all three cases the decomposition may discover
meaningful intermediate concepts and relatively compact decision tables.
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1 Introduction

A decision table provides a simple means for concept representation. It represents a dataset
with labeled instances, each relating a set of attribute values to a class (output concept).
Decision table decomposition is a method based on the “divide and conquer” approach:
given a decision table, it decomposes it to a hierarchy of decision tables. The method aims
to construct the hierarchy so that the new decision tables are less complex and easier to
interpret than the original decision table.

The decision table decomposition method is based on function decomposition, an ap-
proach originally developed for the design of digital circuits [2]. The method iteratively
applies a single decomposition step, whose goal is to decompose a function y = F(X)
into y = G(A, H(B)), where X is a set of input attributes zq,...,z,, and y is the class.
F, G and H are functions represented as decision tables, i.e., possibly incomplete sets of
attribute-value vectors with assigned classes. A and B are subsets of input attributes such
that AU B = X. The functions G and H are developed in the decomposition process and
are not predefined in any way. Such a decomposition also discovers a new intermediate
concept ¢ = H(B). Since the decomposition can be applied recursively on H and G, the
result in general is a hierarchy of decision tables.

Each single decomposition step aims to minimize the joint complexity of G and H and
executes the decomposition only if this is lower than the complexity of F'. Moreover, it is
of crucial importance for the algorithm to find such partition of attributes X into sets A
and B that yields G and H of the lowest complexity. The criteria that guide the selection
of such partition are called partition selection criteria.

Let us illustrate the decomposition by a simple example. Consider the decision ta-
ble in Figure 1. It relates the input attributes x;, x5, and z3 to the class y, such
that y = F(x1,x9,23). There are three possible non-trivial partitions of attributes that
yield three different decompositions y = G1(x1, Hi(22,23)), vy = Ga(xe, Ha(x1,23)), y =
G3(x3, H3(x1,x2)). The first two are given in Figure 2, and the comparison shows that:

e decision tables in the decomposition y = G (z1, Hi(x2,z3)) are smaller than those
for y = Gy (w2, Ha(z1, 73)),

e the new concept ¢; = Hj(zg,x3) uses only three values, whereas that for Hy(xy, z3)
uses four,

e we found it hard to interpret decision tables Gy and H,, whereas by inspecting H,
and G it can be easy to see that ¢; = MIN(xzy,23) and y = M AX (21, ¢;). This can
be even more evident with the reassignment of ¢;’s values: 1 to lo, 2 to med, and 3
to hi.

The above comparison indicates that the decomposition y = Go(xq, Ho(21,x3)) yields
more complex and less interpretable decision tables than the decomposition y = G1(xz1, Hy (22, x3)).



T T2 r3 | Y
lo lo lo | lo
lo lo hi | lo
lo med 1lo | 1lo
lo med hi | med
lo hi lo | 1o
lo hi hi | hi
med 1o lo | med
med 1lo hi | med
med med 1lo | med
med med hi | med
med hi lo | med
med hi hi | hi
hi lo lo | hi
hi lo hi | hi
hi med 1lo | hi
hi med hi | hi
hi hi lo | hi
hi hi hi | hi

Figure 1: An example decision table y = F(x1, 9, 73).

The questions of interest are thus:

1. How do we measure the overall complexity of original decision table and of the
decomposed system?

2. Which are the criteria that can guide the single decomposition step to chose among
possible decompositions?

3. How much information is contained within the hierarchical structure itself?

4. How does interpretability relate to the overall complexity of decision tables in the
decomposed system? Is a less complex system also easier to interpret?

Some of these questions were already addressed in the area of computer aided circuit
design where decomposition is used to find a circuit of minimal complexity that implements
a specific tabulated Boolean function. There, the methods mostly rely on the complex-
ity and partition selection criterion known as Decomposed Function Cardinality (DFC,
see [18]), but its appropriateness has already been questioned [14]. Furthermore, a ques-
tion is whether this criterion can be used for the decomposition of decision tables of interest
to machine learning, where attributes and classes usually take more than two values. More-
over, the main concern of Boolean function decomposition is the minimization of digital
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Figure 2: Two different decompositions of the decision table from Figure 1. Also given
are the overall complexities of the decision tables and the information content of the
structure (see Section 4 for definitions). Original decision table had DFC = 18 and
DTIC = 28.53 bits.



circuit, leaving aside the question of comprehensibility and interpretability of the resulting
hierarchy.

The paper is organized as follows. The next section reviews the related work on decision
table decomposition with the emphasis on its use for machine learning. The decomposition
algorithm to be used throughout the paper is presented in section 3. Section 4 introduces
two new partition selection criteria that are based on information content of decision tables
(DTIC) and on cardinality of newly discovered concepts (CM). That section also discusses
how DFC and DTIC may be used to estimate the overall complexity of derived decision
tables, and shows how DTIC may be used to assess information content of the discovered
hierarchical structure itself. Section 5 experimentally evaluates the different criteria and
complexity measures. Section 6 summarizes the results and concludes the paper.

2 Related work

The decomposition approach to machine learning was used early by a pioneer of artificial
intelligence, A. Samuel. He proposed a method based on a signature table system [19]
and successfully used it as an evaluation mechanism for checkers playing programs. This
approach was later improved by Biermann et al. [3]. Their method, however, did not
address the problem of deriving the structure of concepts and was mainly limited to cases
where the training examples completely covered the attribute space.

A similar approach had been defined even earlier within the area of switching circuit
design. In 1956, Ashenhurst reported on a unified theory of decomposition of switching
functions [2]. The decomposition method proposed by Ashenhurst was essentially the
same as that of Samuel and Biermann, except that it was used to decompose a truth table
of a specific Boolean function to be then realized with standard binary gates. Most of
other related work of those times is reported and reprinted in [7].

Recently, the Ashenhurst-Curtis approach was substantially improved by research groups
of M. A. Perkowski, T. Luba, and T. D. Ross. In [15], Perkowski et al. report on the de-
composition approach for incompletely specified switching functions. Luba [9] proposes
a method for the decomposition of multi-valued switching functions in which each multi-
valued variable is encoded by a set of Boolean variables. The authors identify the potential
usefulness of function decomposition for machine learning, and Goldman [8] indicates that
the decomposition approach to switching function design might be termed knowledge dis-
covery, since a function not previously foreseen by the users might be discovered. From
the viewpoint of machine learning, however, the main drawbacks of existing methods are
that they are mostly limited to Boolean functions and incapable of dealing with noise.

Feature discovery has been at large investigated by constructive induction [11]. Perhaps
closest to the function decomposition method are the constructive induction systems that
use a set of existing attributes and a set of constructive operators to derive new attributes.



Several such systems are presented in [10, 16, 17].

Within machine learning, there are other approaches that are based on problem de-
composition, but where the problem is decomposed by the expert and not induced by a
machine. A well-known example is structured induction, developed by A. Shapiro [20].
His approach is based on a manual decomposition of the problem. For every intermedi-
ate concept either a special set of learning examples is used or an expert is consulted to
build a corresponding decision tree. In comparison with standard decision tree induction
techniques, Shapiro’s approach exhibits about the same classification accuracy with the
increased transparency and lower complexity of the developed models. Michie [12] empha-
sizes the important role the structured induction will have in the future development of
machine learning and lists several real problems that were solved in this way.

The work presented here is based on our own decomposition algorithm [23] in which we
took the approach of Curtis [7] and Perkowski [15], and extended it to handle multi-valued
categorical attributes and functions. Although the algorithm lacks the noise-handling
ability and is thus not fully equipped yet for a general machine learning task, it was
demonstrated to perform well [23] in fairly complex problem domains with up to 15 nominal
attributes.

3 Decision table decomposition algorithm

Let F' be a decision table consisting of attribute-value vectors that map the attributes
X ={x1,...,2,} to the class y, so that y = F(X). A single decomposition step searches
through all the partitions of attributes X into a free set A and bound set B, such that
ANB =0, AUB = X, and A and B contain at least one attribute. Let us denote such
a partition with A|B and assume that a partition selection criterion (A|B) exists that
measures the appropriateness of this partition for decomposition (partitions with lower ¢
are more appropriate). The partition with the lowest 1 is selected and F' is decomposed to
G and H, so that y = G(A,¢) and ¢ = H(B). Provided there exists a complezity measure
6 for F', G, and H, F' is decomposed only if the complezity condition 6(F) > 6(G) + 6(H)
is satisfied. Several partition selection (¢) and complexity (f) measures are introduced in
the next section.

An algorithm that implements the single decomposition step and decomposes a decision
table F' to G and H is in detail described in [23]. Here, we illustrate it informally using
the decision table in Figure 1. For every partition of attributes, the algorithm constructs
a partition matrix with attributes of bound set in columns and of free set in rows. Each
column in the partition matrix denotes the behavior of F' for a specific combination of
values of bound attributes. Same columns can then be represented with the same value of
¢, and the number of different columns is equal to the minimal number of values for ¢ to be
used for decomposition. In this way, every column is then assigned a value of ¢, and GG and



H are straightforwardly derived from such annotated partition matrix. For each of three
partitions for our sample decision table F', the partition matrices with the corresponding
values of ¢ are given in Figure 3.

T9 | 1o 1o med med hi hi z1 | 1o 1lo med med hi hi
T z3 | 1o hi 1o hi 1o hi T9 z3 | lo hi lo hi lo hi
lo lo lo lo med 1lo hi lo lo 1lo med med hi hi
med med med med med med hi med lo med med med hi hi
hi hi hi hi hi hi hi hi lo hi med hi hi hi
c 1 1 1 2 1 3 c 1 2 3 4 5 5

r1 | lo 1lo lo med med med hi hi hi
r3 22 | lo med hi 1lo med hi lo med hi

1o lo 1o lo med med med hi hi hi
hi lo med hi med med hi hi hi hi
c 1 2 3 4 5 5 6 6 6

Figure 3: Partition matrices for three different partitions of attributes x;, x5, and x3 of
decision table in Figure 1.

The assignment of values of ¢ for each column is trivial if decision table instances
completely cover the attribute space. If this is not the case, Wan and Perkowski [21]
proposed an approach that treats missing decision table entries as “don’t cares”. FEach
partition matrix can then have several assignments of values for ¢. The problem of finding
the assignment that uses the fewest values is then equivalent to optimal graph coloring.
Graph coloring is an NP-hard problem and the computation time of an exhaustive search
algorithm is prohibitive even for small graphs. Instead, Wan and Perkowski [21] suggested
a heuristic Color Influence Method of polynomial complexity and showed that the method
performed well compared to the optimal algorithm. Although the examples used in this
paper use decision tables that completely cover the attribute space, the complexity and
partition measures introduced apply with no difference to incompletely covered cases as
well.

The decomposition algorithm examines all the decision tables in the evolving structure
and then applies a single decomposition step to the decision table and its partition that
was evaluated as the most appropriate by ) and that satisfies the complexity condition
O(F) > 0(G) + 0(H). If several partitions are scored equal, the algorithm arbitrarily
selects one among those with the lowest number of elements in the bound set. The process
is repeated until no decomposition is found that would satisfy the complexity condition.

We illustrate this stepwise decomposition using the CAR domain that is described in
section 5. Figure 4 shows a possible evolving hierarchical structure obtained by decom-
position. Each consecutive structure is a result of a single decomposition step. Only the



structure without decision tables is shown. Compared to the original hierarchical model,
c2 corresponds to price, c4 to technical characteristics, and c1 to comfort. ¢3 was not
used in the original model.
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Figure 4: Evolving hierarchy discovered by decomposition of the decision table in the
CAR domain. Each consecutive structure results from a single-step decomposition of its
predecessor.

The overall time complexity of decision table decomposition algorithm is polynomial in
the number of examples, number of attributes, and maximal number of columns in partition
matrices [24]. As the latter grows exponentially with the number of bound attributes, it is
advantageous to limit the size of the bound set. In the experiments presented in Section 5,
however, the problems were sufficiently small to examine all possible bound sets.

The above decomposition algorithm was implemented in the C language as a part of
the system called HINT (Hierarchy INduction Tool) that runs on several UNIX platforms,
including HP/UX and SGI Iris [22].

4  Partition selection criteria and
complexity measures

This section reviews one and introduces two new partition selection criteria 1(A|B). For
each, it also defines the complexity measure and corresponding complexity condition. Fur-



thermore, two overall complexity measures for the hierarchy of decision tables are defined,
and finally, a measure for estimating the information content of the hierarchy itself is
presented.

4.1 Partition selection criteria
4.1.1 Decomposed function cardinality (DFC)

This measure was originally proposed by Abu-Mostafa [1] as a general measure of com-
plexity and used in decomposition of Boolean functions (see [18]). DFC is based on the
cardinality of the function. Given a decision table F'(X), DFC-based complexity is defined
as:

Oprc(F) = |[X]| = [T |2il, i € X (1)

where |z;| represents the cardinality of attribute x;, i.e., the number of values it uses.
The DFC partition selection criterion for decomposition F'(X) = G(A4, ¢) and ¢ = H(B)
is then:
Uore(A[B) = Onrc(G) + Oprc(H) = [ |[All + B (2)

The complexity condition using the above definitions is Oppc(F) > Oppc(G) + Oprc(H),
or equivalently || X|| > |c| ||Al| + || B]|.

For the decision table in Figure 1 and partition matrices in Figure 3, the partition
selection criteria are: Yppc(xy|zors) = 94+ 6 = 15, ¢Yppce(az|rizy) = 154+ 6 = 21, and
Ypre(z3|zi2) = 124+ 9 = 21. Oppc(F) is 18. The only partition that satisfies the DFC
decomposition criterion is zq|zox3.

Although its ability to guide the decomposition of Boolean functions has been illus-
trated in several references including [18], DFC has been recently criticized by Perkowski
and Grygiel for deficiencies in handling some classes of functions including multi-output
symmetric functions [14]. Moreover, we are not aware of any study of the applicability of
DFC measures for decomposition of decision tables other than Boolean.

4.1.2 Information content of decision tables (DTIC)

This measure is based on the idea of Biermann et al. [3] who counted the number of different
functions that can be represented by a given signature table schema, i.e., a tree structure
of concepts whose cardinality is predefined.

A decision table y = F(X) can represent |y|X!l different functions and this number
corresponds to the cardinality of the function. The information such decision table contains
is then equal to

Opric(F) = |[X[|log, |y| bits (3)

Note that for binary functions where |y| = 2, this is equal to Oppc(F).



When decomposing y = F(X) to y = G(A,¢) and ¢ = H(B), we assign a single value
from the set {1,2,...,|c|} to each of the columns of partition matrix A|B. But, each of the
values have to be assigned to at least one instance. In other words, from |y|l/Zll different
functions we have to subtract all those that use less than |c| values. The number of different
functions with exactly |¢| possible values is therefore N(|c|), where N is defined as:

z—1
x
N = 27— ( ,)N(z’)
; U (4)
N(1)= 1
Furthermore, since the actual label (value of ¢) of the column is unimportant, there are
|e|! such equivalent assignments and therefore |c|! equivalent decision tables H. H therefore

uniquely represents N(|c|)/|c|! functions with exactly |c¢| values, and the corresponding
information content is:

Opyric (H) = logy N(|c|) — logy(Je|!) bits (5)

The DTIC partition selection criterion prefers the decompositions with simple decision
tables G and H and therefore low information content, so that:

wDTIC(A‘B) = HDTIC(G) + HIIDTIC(H) (6)
The DTIC-based complexity condition is:
Onric(F) > Ooric(G) + Oppic (H) (7)

For the decision table in Figure 1, DTIC criteria evaluate to: ¢¥pric(21|xexs) = 20.76 bits,
Ypric(xe|ri23) = 27.68 bits, and Ypric(z3]|z122) = 30.39 bits. Opric(F) is 28.53 bits, and,
in contrast to DFC, two partitions qualify for decomposition. Among these, as with DFC,
x1|zox3 has the lowest Opyc.

4.1.3 Column multiplicity (CM)

This is the simplest complexity measure introduced in this paper and equals to the cardi-
nality of ¢ (|¢]), also referred to by Ashenhurst and Curtis as column multiplicity number
of partition matrix [2, 7]. The idea for this measure came from practical experience with
DEX decision support system [5]. There, the hierarchical system of decision tables is con-
structed manually and it has been found that decision tables with small number of output
values are easier to construct and interpret. Formally,

Yem(A|B) = |¢f (8)

As a CM complexity condition a bound on |¢| might be used, but such bound would
have to be domain dependent. Instead, we use DTIC complexity condition when using
CM.

For our example and similarly to DFC and DTIC, CM also selects the partition z|zox3
with ¢cy = 3. Other two partitions have oy (2o|z123) = 5 and Yoy (z3|z122) = 6.
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4.2 Complexity estimation for decision table hierarchy

Using DFC, the overall complexity of decision tables in the hierarchical discovered structure
is the sum of fppc for each decision table.

For DTIC, the complexity estimation again uses the sum of DTIC complexities of each
of the decision tables, with the distinction that #p1ic is used for the decision table at the
root of the hierarchy and 6}, for all other decision tables.

Note that the so-obtained DTIC complexity estimation is just an approximation of the
exact complexity that would take into account the actual number of functions representable
by a multi-level hierarchy. This is because DTIC is designed for a single table only and does
not take into account the reducibility [3] that occurs in multi-level hierarchies and effectively
decreases the number of representable functions. Therefore, the estimated overall DTIC is
the upper bound of the actual complexity.

4.3 Structure information content (SIC)

Using DTIC we can assess both the amount of information contained in the original decision
table and contained in the resulting decision tables that were constructed by decomposition.
The difference of the two is the information contained in the hierarchy itself. We call this
measure structure information content (SIC). The more informative is the hierarchy, the
overall less complex are the resulting decision tables.

5 Experimental evaluation

To evaluate the proposed partition selection and complexity measures, we used three ar-
tificial and three real-world domains that were selected so that the hierarchical structure
was either known in advance or could have been easily anticipated. For each domain, the
decomposition aimed to discover this structure. For evaluation, we qualitatively assess the
similarity of the two structures and quantitatively compare them by using the proposed
complexity measures.

Each of six domains is represented with the initial decision table with instances that
completely cover the attribute space. The experiments could as well be done with sparser
decision tables (see [23]), but in these experiments we wanted to concentrate on complexity
issues rather than generalization. Namely, the proposed partition measures depend only
on cardinalities of attributes and concepts, and not on the actual number of instances in
decision tables. XXXXXXX The results of decompositions are shown as hierarchy graphs,
where, unless otherwise noted, the labels of intermediate concepts indicate the order in
which they were discovered by DTIC and DFC-guided decompositions.
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5.1 Boolean function y = (z; OR z3) AND z3 AND (z4 XOR z;5)

For this case, the initial decision table has 2° = 32 instances, fppc = 32 and Opric = 32
bits. While decomposition with DTIC and CM discovered the anticipated structure, the
DFC-guided decomposition terminated too soon because the complexity condition did
not allow to decompose the decision tables any further (see Figure 5). Note that overall
DFC is the same for DTIC, CM, and DFC discovered decision tables, while the structure
information content is higher for those of DTIC and CM. The decision tables (not shown
in the figure) where checked for interpretability and were found to represent the expected
functions.

DFC = 16
DTIC = 12.42 bits y/2 y/2

SIC = 1958 bits ___—" "\ 7 T

c1/2 c3/2 24/2  ws/2  cl/2
w32 €2/2 wa/2  w5/2 DTIC = 1499 bits //\
PN SIC = 17.01 bits 21/2 w2/2 w3/2
x1/2 x2/2

Figure 5: Decomposition of decision table representing the function y = (z; OR z5) AND
x3 AND (z4 XOR z5) guided by DTIC and CM (left), and DFC (right).

5.2 Palindrome y = PAL(z1, 9, 23, 24, T5, Z¢)

This function returns 1 if the string x;...7¢ is a palindrome and returns 0 otherwise,
i.e., y = (z1 = x6) AND (22 = x5) AND (23 = 24). In the first experiment, the Boolean
attributes z;...xg were used. The initial decision table has Oppc = 64 and OpTic =
64 bits. Again, the decomposition with DFC stops sooner and the domain favors the
decomposition using CM and DTIC. However, for both this and previous case a DFC-
guided decomposition could discover the expected structure if the corresponding complexity
condition would be changed to Oppc(F) > Oprc(G) + Oppc(H). Using this condition, the
decomposition can proceed even if the joint complexity of G and H is equal to the one of
F.

The same experiment was repeated with three-valued attributes x;...x. This time,
however, all three criteria lead to the same and anticipated hierarchical structure, which
is again the same as the left one in Figure 6.

5.3 Function y = MIN(z1, AVG(z9, MAX(z3, 24), 25))

The ordinal attributes x;...x5 can take values 1,2, and 3. While MIN and MAX have
standard interpretation, AVG computes the average of its arguments and rounds it to the

11



DFC = 20 y/2 y/2

]S:)IEI(i 58.175%2&2“ T P

cl/2 c2/2 z3/2 T4/2 cl/2
7N AN AN
c3/2 cd/2 x3/2 xz4/2 22/2 x5/2 c2/2

VANV AN AN

DTIC = 17.80 bits
T1/2 T6/2 T2/2 T5/2 SIC = 46.20 bits T1/2 T6/2

Figure 6: Decomposition of decision table representing the palindrome function guided by
DTIC and CM (left), and DFC (right).

closest integer. The initial decision table has Oppc = 243 and fpric = 385.15 bits. The
anticipated and discovered structures are shown in Figure 7. Quite surprisingly, in all three
cases the decomposition yields a structure with higher structure information content than
that of expected structure by introducing an additional five-valued intermediate concept.
If this is removed, the discovered structure and decision tables would be the same as
anticipated.

It is also interesting to note that the structure discovered using CM on one side and DFC
or DTIC on the other are different but of the same complexity. This example illustrates that
for a specific domain there may exist several optimal structures with regard to complexity.

y/3 y/3 y/3
N N PN
z1/3 cl/3 z1/3 c2/3 z1/3 c3/3
7\ 7 X\ N
/3 ¢c2/3  x5/3 c3/5 cl/3 z5/3 cl/5
7N NN N
z3/3 24/3 22/3 x5/3 x3/3 x4/3 z9/3 ¢2/3
AN
DFC = 45 DFC = 42 x3/3 x4/3
DTIC = 66.04 bits DTIC = 59.77 bits
SIC = 319.11 bits SIC = 325.38 bits

Figure 7: Decompositions of the function y = MIN(xy, AVG(z9, MAX(z3,24),25)): the
anticipated structure (left), the structure discovered using CM (middle), and DFC and
DTIC (right). The complexity and information measures for the latter two decompositions
are the same.
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5.4 DEX models CAR, EMPLOY, and NURSERY

An area where concept hierarchies have been used extensively is decision support. There,
the problem is to select an option from a set of given options so that it best satisfies
the aims or goals of the decision maker. DEX [5] is a multi-attribute decision support
system that has been extensively used to solve realistic decision making problems. DEX
uses categorical attributes and expects the structure and the functions to be given by
the expert. The formalism used to describe the resulting model and its interpretation is
essentially the same as those derived through the decomposition process described in this
paper. This makes models developed by DEX an ideal benchmark for the evaluation of
decision table decomposition. In this paper, we use the following three DEX models:

CAR: A model for evaluating cars based on their price and technical characteristics. This
simple model was developed for educational purposes and is described in [4].

EMPLOY: This is a simplified version of the models that were developed with DEX for
a common problem of personnel management: selecting the best candidate for a
particular job. While the realistic models that were practically used in several mid- to
large-size companies in Ljubljana and Sarajevo consisted of more than 40 attributes,
the simplified version uses only 7 attributes and 3 intermediate concepts and was
presented in [6].

NURSERY: This model was developed in 1985 [13] to rank applications for nursery schools.
It was used during several years when there was excessive enrollment to these schools
in Ljubljana, and the rejected applications frequently needed an objective explana-
tion. The final decision depended on three subproblems: (1) occupation of parents
and child’s nursery, (2) family structure and financial standing, and (3) social and
health picture of the family.

The goal of this experiment was to reconstruct these models from examples. The
learning examples were derived from the original models, where for all combinations of
input attributes the class was determined by a corresponding original model.

The discovered hierarchies are given in Figures 8, 9, and 10. In all cases, DFC, DTIC,
and CM-guided decomposition found the same hierarchical structures and corresponding
decision tables. Using DFC and DTIC, the order in which new intermediate concepts were
found was the same but different to the one when CM was used. For example, in EMPLOY,
DFC and DTIC-guided decomposition discovered c1 first, while, using CM, this concept
was discovered as the last one.

All the discovered hierarchies have higher information content than the original ones.
Also, the overall complexity of decision tables is lower according to both DFC and DTIC.
Most importantly, the discovered structures are very similar to the original ones. In fact,
if ¢3 would be removed from CAR (making c4 directly dependent on lugboot, doors, and

13



persons), the two structures would be the same. The same applies to EMPLOY and
NURSERY if c1 and c2 are removed, respectively. In other words, the decomposition
found the same structures as the original ones but additionally decomposed the decision
tables for comfort (CAR), employ (EMPLOY), and struct+finan (NURSERY) and in this
way obtained less complex decision tables.

The derived decision tables were compared to the original ones and found to be the
same but in the names used for instance labels (decomposition uses numbers while original
decision tables use meaningful names). The exception are decision tables for tech and
comfort in the CAR domain, where the decomposition found redundant values of comfort.
If these values were removed from the original model, the corresponding decision tables
would have been again the same.

car/4 car/4

N

price/4 tech/4 c2/4 cl/4

TN TN N TN

buying/4 maint/4 comfort/4 safety/3 buying/4 maint/4 c4/3 safety/3

lugboot/3 doors/4 persons/3 lugboot/3 c3/4
DFC = 77 DFC = 65 doors/4 persons/3
DTIC = 126.75 bits DTIC = 107.90 bits
SIC = 3329.25 bits SIC = 3348.10 bits

Figure 8: The original concept hierarchy of CAR (left) and the decompositions based on
CM, DFC and DTIC (right).
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/ | exper/s
per_char/3 exper/
for_lang/3 /ﬂ\\\\\. age/5
degree/5 employ/4
g intel/4work_app/3 //////;g'sz\\\\\\
RN c1/4 3/3
comm/4 manag/3 //% x\\\ i/ﬂ\\\
c5/3 c4/3 intel/4

c2/3

DFC = 85 for_lang/tfx /eXper/S / \
age/5

DTIC = 128 bits

SIC = 35872 bits degree/5 comm/4 manag/3
Figure 9: The original concept hierarchy of EMPLOY (top) compared to the hierarchy
discovered by CM, DFC, and DTIC-guided decomposition (bottom).

nursery/5 DFC = 94
DTIC = 169.20 bits
SIC = 29922.99 bits

employ/4 soc+thealth/3
£ /3 health/3
struct+finan
parents/3 social/3
has_nurs/5
finance/2 housing/3
8 nursery/5
structure/3
form/4 children/4 c4/4 c5/3
health/3
parents/3 cl/3 .
has_nurs/5 //% \\\\ social/3
c3/3 c2/3
DFC = 82 ~ form/4 \\ \\\ housing/3
DTIC = 132.95 bits children/4 finance/2

SIC = 29959.24 bits

Figure 10: The original (left) and discovered concept hierarchy using CM, DFC and DTIC
criteria (right) for NURSERY.
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6 Conclusion

The paper investigates the appropriateness of three partition selection for decision table
decomposition: decision table information content (DTIC) and column multiplicity (CM)
introduced in this paper and decomposed function cardinality (DFC) that has already been
used primarily for the decomposition of Boolean functions.

The experimental evaluation exposes the deficiency of DFC when decomposing a de-
cision table that expresses a Boolean function. This may be alleviated by relaxing the
DFC complexity condition. Furthermore, in more complex domains with multi-valued at-
tributes, the decomposition guided by any of the proposed criteria discovered equal or
better hierarchical structures than expected with respect to the complexity of decision
tables and informativity of the hierarchical structure. The order under which the interme-
diate concepts were discovered was the same for DFC and DTIC, but different for CM. A
qualitative evaluation of derived structures reveals that in general the discovered decision
tables represent meaningful and interpretable concepts.

Although less complex in definition and easier to compute, DFC and CM both stand
well in comparison with more complex partition selection measure DTIC. Also comparable
is the utility of DFC and DTIC to assess the complexity of the original and derived decision
tables, although we have shown that DFC-based measure performed worse on two Boolean
functions. Overall, while DFC and DTIC have better theoretical foundations than an
intuitive partition selection measure CM, the experimental evaluation does not indicate
that any of these is to be strictly preferred over the other.

The decision table decomposition was primarily developed for switching circiut deasign.
However, experiments in non-trivial domains like DEX’s strongly encourage further re-
search and development of this method for machine learning and knowledge discovery. To
become a general machine learning tool, the method will have to be extended so as to
handle continuous attributes and deal with noise in learning examples.
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