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Abstract. Data mining is often used to develop predictive models from
data, but rarely addresses how these models are to be employed. To use
the constructed model, the user is usually required to run an often com-
plex data mining suite in which the model has been constructed. A better
mechanism for the communication of resulting models and less complex,
easy to use tools for their employment are needed. We propose a techno-
logical solution to the problem, where a predictive model is encoded in
XML and then used through a Web- or Palm handheld-based decision
support shell. This schema supports developer-to-user and user-to-user
communication. To facilitate the communication between the developers
we advocate the use of data mining scripts.

1 Introduction

Development of predictive models is one of the key areas within data mining and
relies on various approaches including statistics, machine learning and intelligent
data analysis. In our view, predictive data mining has two different aims: (1)
the uncovering of hidden relationships and patterns in the data and (2) the
construction of usable prediction models. While authors that report on predictive
data mining most often address the first issue, the second aim is usually covered
solely in terms of assessment of predictive accuracy. Cases where models are
indeed put into practice are rare, and so are the analysis of how the newly
developed models improve some decision-making process [2].

Decision support systems most often rely on some incorporated predictive
model. The above-described problem can thus be stated as bridging the gap
between predictive data mining and decision support. The aspect of this bridge
that we address in this paper is technological and deals with technical means
that support the communication between model developers and users.

First, there is an issue of communication between the developers of the model.
Their communication should incorporate the information on what procedures
were executed on the data to derive the predictive model. While, at a tactical
level, CRISP guidelines [4] provide a well-accepted framework to organize such



a description, their technical aspects are perhaps best covered by some script
language that is supported by the data mining suite of choice. Data mining
script can effectively and concisely specify the procedures that were executed,
and when appropriately annotated through the use of comments, may have also
a documental value. Developers should be allowed to easily modify the scripts,
incorporate additional methods and approaches, and communicate the scripts to
other members of data analysis team. Many modern data mining tools support
scripting, giving them a particular advantage to the purely GUI-based systems.

Next, there is a communication between developers and users. Most often,
the programs for data analysis often tend to be large complex for a non-specialist
user. While targeting data analysis, we believe that these environments are in-
appropriate for decision support. Decision support may often require much less
resources (computing power, methods and procedures) than data analysis, and,
when using specific types of predictive models, can be implemented within small,
easy to use programs. While the means of encoding predictive models (say, in
XML) are emerging, so should the corresponding tools for decision support be
developed that are lightweight, easy to use, and inexpensive.

Finally, there is a user-to-user communication. A satisfied user will often be
willing to share her experience on using the model with her colleague, thereby
promoting the utility of the model and increasing its practical value.

The technology should thus allow a seamless exchange of predictive models
and provide tools for their effective and appropriate use. With emergent mobile
devices, the employment of predictive models should not be limited to PCs. For
instance, in medicine, decisions often take place where there is no PC immedi-
ately available.

In this paper, we show how a specific data mining suite called Orange can be
used to support different phases of CRISP guidelines, resulting in a script that
reads the data, develops a predictive model, and stores it in XML format. The
core of this paper (and perhaps its major originality) is our proposal of technol-
ogy called Decisions-at-Hand that allows the user to apply XML-encoded model
through either a Web- or a Palm handheld-based decision support shell. We il-
lustrate the proposed approach through the analysis of prostate cancer patient
data, targeting the development of the model that can be used in clinical prac-
tice and that, based on preoperative findings, predicts the probability of cancer
being organ confined. We highlight the importance of standards for representing
predictive models, including the emerging standard PMML (Predictive Model
Markup Language), and give some proposals for further work.

2 Predictive Data Mining in Orange: A Case Study on

Prostate Cancer Data

A major goal in predictive data mining is to construct a predictive model. Most
often, this is a four-step procedure that includes familiarization with the data,
data preprocessing, modelling and evaluation of performance of constructed
models.



Orange is a tool that can support all the phases of the CRISP process. In
this section, we show its application on the problem from urology. Based on
retrospective data from Memorial Sloan Kettering Cancer Center in New York,
we build a predictive model that, given a set of pre-operative findings, tries to
estimate the probability that the tumor is organ confined. The motivation for
this task is in the clinically usefulness of such model, because organ confined
disease is an important endpoint for surgical decision-making. It gives some
indication of the curability of the prostate cancer, as well as guidelines for the
surgical technique to be used (e.g., nerve sparing vs. non nerve-sparing).

The data set that we have used is comprised of retrospective records about
1269 patients, of which for 768 (60.5%) their tumor was found to be organ con-
fined. Prior to operation, ten commonly used predictors (Table 1) were recorded
for each patient. Our task was therefore to examine if these features contain
sufficient information to predict the probability of organ-confined tumor, and if
so, to construct a corresponding prognostic model.

Table 1. Features describing prostate cancer patients

Feature Description

PSA preoperative PSA
clinstage clinical stage (T1c, T2a, T2b, T2c, T3)
bxno number of biopsy
posibxno number of cancer positive cores
bx45posi number of cores with Gleason grade 4 or 5
gg1 primary Gleason grade in RPX specimens
gg2 secondary Gleason grade in RPX specimens
dre digital rectal examination; 0:neg, 1: pos
totalca total length of cancer in all cores
totalbx total length of all biopsy cores

2.1 Familiarization with the data

The easiest way to “get know” the data is to use visualization. Orange’s suite
includes Orange.First, an easy-to-use tool to explore the data. It targets visu-
alization of classified data, and for instance supports different visualizations of
correlations of features and outcome. For example, correlation between a feature
and the outcome can be observed in the form of bar graphs giving the distribution
of outcomes at different values of the feature. Fig. 1 shows that the probability of
tumor being organ-confined is at the highest (around 0.9) at a moderate value of
posibxno. Patients with higher values have lower probabilities of organ-confined
tumor, though the number of such cases is small and the confidence intervals
show that this trend probably cannot be proven by our data.



Fig. 1. Probabilities of organ-confined tumor for patients with different number of
cancer positive cores

2.2 Preprocessing

Preprocessing can be done automatically or manually. In our case, we need to
categorize the features and select those that will be included in the model. We
usually let the computer program make a proposition, but then ask the domain
expert to make the final decision.

Fig. 2. Categorization with Orange.First

Orange.First can assist in a manual search for a suitable categorization. It
draws a graph (Fig. 2) depicting a probability of certain class at different values of



the attribute and, at each point, a chi-square difference between the neighboring
intervals if this point would be used as a cut-off point. After setting a cut-off
point, the chi-square curve adjusts so that it shows the difference for additional
cut-off points.

Orange supports different automatic algorithms for determining cut-off points,
such as equidistant categorization, quartile categorization, entropy-MDL based
categorization. The latter [5] is especially interesting since it does not require
the user to set the number of categories in advance. As a side effect, if it finds
no cut-off point the feature is considered useless and should be discarded.

While we are still working on a graphical user interface for this task, writing a
fairly simple Orange script in Python programming language can easily perform
these operations:

import orange

origData = orange.ExampleTable("confined.tab")

import orngDisc

data = orngDisc.discretize(origData)

For the features bxno and totalbx the categorization did not find suitable
cut-off points and suggested that this features may not be useful for prediction
model. They were therefore removed by orngDisc.discretize. The remaining
continuous-valued features were categorized by using cut-off points shown in
Table 2.

Table 2. Categorization of features

Feature Cut-Off Points

PSA 6.04, 14.40, 31.45
bx45posi 0.00, 1.00
Posibxno 2.00
Totalca 3.50, 15.85, 35.20

In Orange, an expert may edit cut-off points manually. After this is done,
we can assess the quality of the attributes by measures like information gain or
ReliefF [8]:

relieff=orange.MeasureAttribute_relief(k=20, m=50)

orngDisc.measure(data, relieff)

The advantages of ReliefF are that it does not suffer for myopia (a tendency
of measures from information theory to underestimate the attributes that are
not immediately useful) and that it assigns negative grades to attributes that it
finds of no use. We can thus additionally discard the attributes that are ranked
negative. There are no such attributes for our data (Table 3), though posibxno,
gg2 and possibly also clin-stage and dre show a low ReliefF, so the expert should
consider whether they should be used for modelling or not.

This concludes the preprocessing; we removed several attributes and used
the automatic categorization for the others.



Table 3. Features ranked by ReliefF

Feature ReliefF

bx45posi 0.041
PSA 0.036
totalca 0.022
gg1 0.016
dre 0.009
clinstage 0.009
gg2 0.002
posibxno 0.001

2.3 Modelling

We used three machine learning methods, which are usually successfully ap-
plied to medical data: naive Bayesian modelling, and two similar algorithms
for induction of classification trees: C4.5 [10] and Orange’s implementation of
classification trees. The following code constructs the modelling objects:

import orngBayes

import orngTree

bayes = orngBayes.BayesLearner()

bayes.name = ’Naive Bayes’

c45 = orange.C45Learner()

c45.commandline("-s")

c45.name = ’C45’

tree= orngTree.TreeLearner(minExamples=5.0, maxMajor=0.8, minLeaf=5.0)

tree.name = ’Orange Tree’

In Orange, a model is constructed by calling one of the just constructed
objects with modelling data (patient descriptions) as a parameter. For instance,
to construct a naive Bayesian classifier from our complete (and preprocessed)
data set, a command bayesmodel=bayes(data) will suffice. For the purpose of
evaluation, however, a cross-validation schema is used instead of constructing a
single model.

2.4 Evaluation

In order to evaluate the models, we used ten-fold cross validation technique: data
is divided into ten folds and the modelling is repeated ten times. Each time, we
use nine folds for modelling and the remaining fold for testing the prediction.

There are many different statistics with which we can measure the fitness
of models. The most common in machine learning is classification accuracy,
the proportion of testing examples for which the outcome has been correctly
predicted. By our experience, medical experts prefer the “area under ROC”



statistics, which is in interpretation a discrimination measure and, drawing two
cases with different outcomes (organ-confined cancer, cancer that was not organ-
confined), estimates the proportion of such cases where a model would correctly
assign a higher probability of organ confined cancer to the case with cancer that
was indeed organ-confined. The following code computes and prints both:

import orngEval

learners = (bayes, c45, tree)

results = orngEval.CrossValidation(learners, data)

cdt = orngEval.computeCDT(results)

print "Learner CA aROC"

for i in range(len(learners)):

print "%-15s" % learners[i].name,

print "%5.3lf" % orngEval.CA(results)[i],

" %5.3lf" % orngEval.aROC(cdt[i])[7]

These two statistics are shown in Table 4. The naive Bayesian model has the
highest accuracy and aROC. Although this is a result of a rather preliminary
study, the aROC achieved by naive Bayes is, within participating institutions,
the highest obtained for this problem and (by expert’s opinion) likely better
than any alternative, including clinical judgment.

Table 4. Accuracy and area under ROC of the models

Learner CA aROC

Naive Bayes 0.755 0.816
C45 0.735 0.776
Orange Tree 0.741 0.766

3 Encoding of Decision Models in XML

Being satisfied with the results of the evaluation, we can now choose our mod-
elling technique, construct a predictive model from the complete data set, and
output it to an XML file:

bayesmodel=bayes(data)

bayesmodel.saveAsXML("confined.xml")

The final model is defined with a little bit of editing of our XML file confined.xml,
mainly to change the variable names to make them more descriptive, and to add
some descriptive text. The file starts with some general information about the
model and authors:

<?xml version="1.0" ?>



<model name="Organ Confined Prostate Cancer">

<description>

Based on preoperative predictors computes the probability that prostate

cancer is organ-confined.

</description>

<author>M. W. Kattan, B. Zupan, J. Demsar</author>

<date>May 2001</date>

<outcome>Probability of Prostate Cancer to be Organ-Confined</outcome>

The description of the model continues with the definition of predictive vari-
ables, describing their type and other information relevant for the data entry
form (for our illustration, just the first two variables are listed):

<variables>

<var>

<name>PSA</name>

<type>categorical</type>

<input>pulldown</input>

<values>&lt;=6.04;(6.04, 14.40];(14.40, 31.45];&gt;31.45</values>

</var>

<var>

<name>Clinical Stage</name>

<type>categorical</type>

<input>pulldown</input>

<values>T1c;T2a;T2b;T2c;T3a</values>

</var>

...

</variables>

Lastly, the model itself is defined by means of stating a priory class prob-
abilities and conditional probabilities that are required for the computation of
probability of the outcome using naive Bayesian formula:

<modeldefinition type="naivebayes">

<classprobabilities>0.605; 0.395</classprobabilities>

<contingencymatrix>

<conditionalprobability attribute="PSA">

0.244,0.756; 0.384,0.616; 0.640,0.360; 0.898,0.102

</conditionalprobability>

<conditionalprobability attribute="Clinical Stage">

0.265,0.735; 0.373,0.627; 0.642,0.358; 0.667,0.333; 0.838,0.162

</conditionalprobability>

...

</contingencymatrix>

</modeldefinition>

4 Decisions-at-Hand: A Decision Support Shell Approach

Decisions-at-Hand schema currently supports naive Bayesian and logistic regres-
sion models. It is implemented through a Web-enabled server-based decision sup-
port application and software that runs on a Palm handheld computer. While,



Fig. 3. Web interface of Decisions-at-Hand: entry to Web-based decision support shell
(top left), specification of predictive factors (bottom left), and outcomes (right).

based on the current experience from Memorial Sloan Kettering Cancer Cen-
ter [6], we expect that in clinical practice Palm solutions will be better accepted,
the Web-based interface may especially be useful in the decision support system
prototyping and testing phase.

Three snapshots of the Web interface are given in Fig. 3. The user starts
by uploading a decision model (confined.xml), and can then enter the patient-
specific data. Finally, the page with outcomes shows the probability of organ-
confined tumor and provides additional information on an influence of specific
predictor. The influence can be either positive or negative, depending on the
contribution of a specific factor towards the increase or decrease of probability
of outcome in respect to a priory probability. For this, we have implemented the
naive Bayesian approach as suggested in [7] and previously applied for medical
diagnosis in [11].

The user interface on Palm is conceptually similar to the one available through
the Web. XML models are transferred to Palm through synchronization with PC.
While the user can choose any downloaded model, a recently used one on Palm is
displayed immediately after the invocation of the program. At present, only the



shell for logistic regression models is implemented (LogReg program), and we
are currently working on the support for other types of predictive models. Few
snapshots of Palm interface are given in Fig. 4, this time showing an example of
utility of the logistic regression-based decision support model to determine the
severity of crush injury [1]. Decisions-at-Hand schema on Palm is described in
further detail in [13].

Fig. 4. Snapshots from decision support shell on Palm.

5 Towards the Standardization of Model Interchange

A distinguishing strength of the Decisions-at-Hand schema lies in its ability to
use predictive models developed by some external data analysis or data min-
ing system, such as Orange. This requires a standardized model representation
that is easily exchanged and manipulated by both humans and machines. As
illustrated in previous section, our representation is based on XML using a pro-
prietary document type definition that facilitates the representation of naive
Bayesian and logistic regression models.

Recently, an important initiative has been raised by the Data Mining Group
(DMG, http://www.dmg.org/) to provide a vendor-independent open standard
of defining data mining models. DMG is “an independent, vendor-led group
which develops data mining standards”, which currently includes seven members:
Angoss, IBM, Magnify, NCR, Oracle, SPSS, and the National Centre of Data
Mining at the University of Illinois, Chicago. Their emerging standard is called
Predictive Model Markup Language (PMML, http://www.dmg.org/html/
pmml v1 1.html). It is based on XML, and facilitates the exchange of models



between different vendors’ applications in order to visualize, analyze, evaluate or
otherwise use the models. The most recent version of PMML is 1.1, which sup-
ports the following types of models: polynomial and general regression, decision
trees, center and density based clusters, association rules, and neural nets.

Unfortunately, none of the models used in Decisions-at-Hand are currently
supported by PMML. This is a big obstacle, and we urge for incorporating
both naive Bayesian and logistic regression models into PMML. For applications
in medicine, some other model types would be useful as well: decision tables
(interestingly, perhaps, the most known and used decision models in the area of
prostate cancer are decision tables [9]), hierarchical multi-attribute models [3],
and survival prediction models [12].

After a basic support for some model type has been provided in PMML,
it seems relatively straightforward to translate a proprietary XML format into
PMML, or even completely replace the former with the latter. The formats
are similar and contain similar elements: general information about the model
(referred to as Header in PMML), definition of variables (Data Dictionary and
Mining Schema), and the model itself. Some elements related to user interface,
such as <input>pulldown</input>, will need to employ PMML’s Extension

Mechanism.
Notice also that there are other, commercial attempts, like IBM’s Intelligent

Miner Scoring schema (see www-4.ibm.com/software/data/iminer/scoring/),
to use PMML as a communication mechanism between model generation and
model utilization. Besides being free, perhaps the main difference between these
and approach proposed in this paper is (1) in simplicity and small size of decision
support shells and (2) in the exclusive platforms – Web and handheld computers
– that we are targeting.

6 Conclusion

Data mining is often concerned with development of predictive models. In order
for these to be really used in daily practice, they have to be seamlessly inte-
grated within easy-to-use decision support systems. The authors of this paper
believe that appropriate technology is one of the key factors that may help to
advance the acceptance and use of predictive models in practice, and facilitate
the communication be-tween the developers and users. In particular, we believe
that crafting the appropriate easy-to-use and readily (freely?) available decision
support shells may help in this endeavor. For this, we propose a schema where a
predictive model is developed separately within some data mining or data anal-
ysis suite (in our case, in Orange), while for decision support a decision shell is
to be used either through a Web-based interface or on a handheld computer.

The utility of the Orange data mining suite and applications within our
Decisions-at-Hand schema for development of prognostic models and decision
support were presented in the paper. They are both freely available at the Web
sites http://magix.fri.uni-lj.si/orange and http://magix.fri.uni-lj.

si/palm.
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