
To appear in Proc. ICML-97Machine Learning by Function DecompositionBla�z ZupanJo�zef Stefan InstituteLjubljana, Sloveniablaz.zupan@ijs.si Marko BohanecJo�zef Stefan InstituteLjubljana, Sloveniamarko.bohanec@ijs.si Ivan BratkoFaculty of Computer andInformation Sciences, andJo�zef Stefan InstituteLjubljana, Sloveniaivan.bratko@fri.uni-lj.si Janez Dem�sarFaculty of Computerand Information SciencesUniversity of LjubljanaLjubljana, Sloveniajanez.demsar@fri.uni-lj.siAbstractWe present a new machine learning methodthat, given a set of training examples, inducesa de�nition of the target concept in terms of ahierarchy of intermediate concepts and theirde�nitions. This e�ectively decomposes theproblem into smaller, less complex problems.The method is inspired by the Boolean func-tion decomposition approach to the designof digital circuits. To cope with high timecomplexity of �nding an optimal decomposi-tion, we propose a suboptimal heuristic al-gorithm. The method, implemented in pro-gram HINT (HIerarchy Induction Tool), is ex-perimentally evaluated using a set of arti�-cial and real-world learning problems. It isshown that the method performs well both interms of classi�cation accuracy and discoveryof meaningful concept hierarchies.1 INTRODUCTIONTo solve a complex problem, one of the most generalapproaches is to decompose it into smaller, less com-plex and more manageable subproblems. In machinelearning, this principle is a foundation for structuredinduction (Shapiro 1987): instead of learning a sin-gle complex classi�cation rule from examples, de�ne agoal-subgoal hierarchy and learn the rules for each ofthe subgoals. Originally, Shapiro used structured in-duction for the classi�cation of a fairly complex chessendgame and demonstrated that the complexity andcomprehensibility (\brain-compatibility") of the ob-tained solution was superior to the unstructured one.Typically, applications of structured induction involvea manual development of the hierarchy and a manual

selection of examples to induce the classi�cation rules;usually this is a tiresome process that requires activeavailability of a domain expert over long periods oftime. Considerable improvements in this respect maybe expected from methods that automate or at leastactively support the user in the problem decomposi-tion task.In this paper we present a method for developing aproblem decomposition hierarchy from examples andinvestigate its applicability in machine learning. Themethod is based on function decomposition, an ap-proach originally developed for the design of digitalcircuits (Ashenhurst 1952, Curtis 1962). The goal is todecompose a function y = F (X) into y = G(A;H(B)),whereX is a set of input attributes x1; : : : ; xn, and y isthe class variable. F , G, and H are functions partiallyspeci�ed by examples, i.e., by sets of attribute-valuevectors with assigned classes. A and B are subsets ofinput attributes such that A [ B = X . The functionsG and H are determined in the decomposition pro-cess and are not prede�ned in any way. Their jointcomplexity (determined by some complexity measure)should be lower than the complexity of F . Such a de-composition also discovers a new intermediate conceptc = H(B). Since the decomposition can be appliedrecursively on H and G, the result in general is a hier-archy of concepts. For each concept in the hierarchy,there is a corresponding function (such as H(B)) thatdetermines the dependency of that concept on its im-mediate descendants in the hierarchy.The proposed decomposition method is limited tonominal-valued attributes and classes. It was imple-mented in program HINT (HIerarchy Induction Tool).In this paper we do not describe the speci�c noise han-dling mechanism in HINT.The reminder of the paper is organized as follows.Section 2 overviews the related work. The learning



method is described in detail in section 3, and exper-imentally evaluated in section 4 on several domainsof di�erent complexity. The paper is concluded by asummary and possible directions of further work.2 RELATED WORKThe decomposition approach to machine learning wasused by a pioneer of arti�cial intelligence, A. Samuel.He proposed a method based on a signature table sys-tem (Samuel 1967) and successfully used it as an eval-uation mechanism for his checkers playing programs.This approach was later improved by Biermann et al.(1982). Their method, however, did not address theproblem of deriving the structure of concepts.A similar approach had been de�ned even earlierwithin the area of switching circuit design. Ashenhurst(1952) reported on a uni�ed theory of decompositionof switching functions. His decomposition method wasessentially the same as that of Biermann et al., exceptthat it was used to decompose a truth table of a speci�cBoolean function to be then realized with standard bi-nary gates. Most of other related work of those timesis reported and reprinted by Curtis (1962).Recently, the Ashenhurst-Curtis approach was sub-stantially improved by research groups of M. A.Perkowski, T. Luba, and T. D. Ross. Perkowski et al.(1995) report on the decomposition approach for in-completely speci�ed switching functions. Luba (1995)proposes a method for the decomposition of multi-valued switching functions in which each multi-valuedvariable is encoded by a set of Boolean variables. Theauthors identify the potential usefulness of functiondecomposition for machine learning. Goldman et al.(1995) evaluate FLASH, a Boolean function decom-poser, on a set of eight-attribute binary functions andshow its robustness in comparison with C4.5 decisiontree inducer.Feature discovery has been at large investigated byconstructive induction (Michalski 1986). Perhaps clos-est to the function decomposition method are the con-structive induction systems that use a set of existingattributes and a set of prede�ned constructive opera-tors to derive new attributes (Pfahringer 1994, Raga-van and Rendell 1993).Within machine learning, there are other approachesthat are based on problem decomposition, but wherethe problem is decomposed by the expert and not dis-covered by a machine. A well-known example is struc-tured induction (a term introduced by Donald Michie)

applied by Shapiro (1987). Their approach is based ona manual decomposition of the problem and an expert-assisted selection of examples to construct rules for theconcepts in the hierarchy. In comparison with stan-dard decision tree induction techniques, structured in-duction exhibits about the same classi�cation accuracywith the increased transparency and lower complexityof the developed models. Michie (1995) emphasizedthe important role of structured induction and listedseveral real problems that were solved in this way.The concept hierarchy has also been used by amulti-attribute decision support expert system shellDEX (Bohanec and Rajkovi�c 1990). There, a tree-likestructure of variables is de�ned by a domain expert.DEX has been successfully applied in more than 50realistic decision making problems.The method presented in this paper therefore bor-rows from three di�erent research areas: it sharesthe motivation with structured induction and struc-tured approach to decision support, while the coreof the method is based on Ashenhurst-Curtis func-tion decomposition. In comparison with related work,the present paper is original in the following aspects:new method for handling multi-valued attributes andclasses, improved decomposition heuristics, empha-sis on generalization e�ects of decomposition, payingstrong attention to the discovery of meaningful con-cept hierarchies, and experimental evaluation on ma-chine learning problems.3 DECOMPOSITION METHODThis section presents the decomposition method.First, we introduce the method by an example. Next,we formally present the decomposition algorithm andconclude with a note on the implementation.3.1 INTRODUCTORY EXAMPLESuppose a function y = F (x1; x2; x3) is given where x1,x2, and x3 are attributes and y is the target concept.y, x1, and x2 can take the values lo, med, hi; x3 cantake the values lo, hi. The function F is partiallyspeci�ed with a set of examples in Table 1.There are three non-trivial partitions of the at-tributes: hx1ijhx2; x3i, hx2ijhx1; x3i, and hx3ijhx1; x2i,and three corresponding decompositions: y =G1(x1; H1(x2; x3)), y = G2(x2; H2(x1; x3)), and y =G3(x3; H3(x1; x2)). These decompositions are givenin Figure 1. The comparison shows that:
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Figure 1: Three di�erent decompositions of the example set from Table 1.x1 x2 x3 ylo lo lo lolo lo hi lolo med lo lolo med hi medlo hi lo lolo hi hi himed med lo medmed hi lo medmed hi hi hihi lo lo hihi hi lo hiTable 1: Set of examples that partially describe thefunction y = F (x1; x2; x3).� Example sets in the decomposition y =G1(x1; H1(x2; x3)) are overall smaller than thosefor the other two decompositions.� The new concept c1 = H1(x2; x3) uses only threevalues, whereas that for H2(x1; x3) uses four andthat for H3(x1; x2) uses �ve.� By inspecting the example sets for H1 and G1 itis easy to see that c1 corresponds to MIN(x2; x3)and y to MAX(x1; c1). It is harder to interpretthe sets of examples for G2, H2, G3, and H3.Among the three attribute partitions it is thereforebene�cial to decide for hx1ijhx2; x3i and decomposey = F (x1; x2; x3) to y = G1(x1; c1) and c1 =H1(x2; x3)).

3.2 SINGLE-STEP DECOMPOSITIONThe core of the decomposition algorithm is a single-step decomposition which, given a set of examples EFthat partially specify the function ci = F (X) and apartition of attributes X to sets A and B, decomposesF into ci = G(A; cj) and cj = H(B). This is done byconstructing the example sets EG and EH that par-tially specify G and H , respectively. X is a set ofattributes x1; : : : ; xm, and cj is a new, intermediateconcept. A is called a free set and B a bound set, suchthat A [ B = X and A \ B = ;. EG and EH arediscovered in the decomposition process and are notprede�ned in any way.The single-step decomposition starts with the deriva-tion of partition matrix.De�nition 1 Given a disjoint partition of X to AjB,a partition matrix PAjB is a tabular representation ofexample set EF with all combinations of values of at-tributes in A as row labels and of B as column labels.Each example ei 2 EF has its corresponding entryin PAjB with a row index A(ei) and a column indexB(ei). PAjB entries with no corresponding examples inEF are denoted with \-". A column a of PAjB is callednon-empty if there exists ei 2 EF such that B(ei) = a.Each column in the partition matrix denotes the be-havior of F when the attributes in the bound set areconstant. Columns that exhibit the same behaviorare called compatible and can be represented with the



same value of cj . An example partition matrix is givenin Figure 2.a.De�nition 2 Columns a and b of partition matrixPAjB are compatible if F (ei) = F (ej) for every pairof examples ei; ej 2 EF with A(ei) = A(ej) andB(ei) = a, B(ej) = b. The number of such pairs isdenoted d(a; b).Note that according to this de�nition the unspeci-�ed PAjB entries are compatible with any value. Thenumber of values for cj corresponds to the number ofgroups of mutually compatible columns. The lowestnumber of such groups is called column multiplicityand denoted by �(AjB). It is derived by the coloringof column incompatibility graph.De�nition 3 Column incompatibility graph IAjB is apair (V;E), where each non-empty column i of PAjBis represented with a vertex vi 2 V , and an edge(vi; vj) 2 E connects two vertices if the correspond-ing columns of vi and vj are incompatible.Then, �(AjB) is the number of colors needed to colorIAjB . Namely, the proper coloring guarantees that twovertices representing incompatible columns are not as-signed the same color. The same colors are only as-signed to the columns that are compatible. Therefore,the optimal coloring discovers the lowest number ofgroups of compatible PAjB columns. An example ofcolored incompatibility graph is given in Figure 2.b.Graph coloring is an NP-hard problem and the com-putation time of an exhaustive search algorithm is pro-hibitive even for small graphs with about 15 vertices.Instead, Perkowski et al. (1995) suggested a Color In-uence Method of polynomial complexity and showedthat the method performed well compared to the opti-mal algorithm. The Color Inuence Method sorts thevertices to color by their decreasing connectivity andthen assigns to each vertex a color that is di�erent fromthe colors of its neighbors so that a minimal numberof colors is used. We use the same coloring method,with the following improvement: when a color is tobe assigned to vertex v and several compatible ver-tices have already been colored with di�erent colors,the color is chosen that is used for a group of coloredvertices v1; : : : ; vk that are most compatible to v. Thedegree of compatibility is estimated asPk1 d(v; vi) (seeDe�nition 2 for d).Each vertex in IAjB denotes a distinct combination ofvalues of attributes in B, and its label (color) denotes
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(b)Figure 2: Partition matrix with column labels (c1) forthe attribute partition hx1ijhx2; x3i and set of exam-ples from Table 1 (a) and corresponding column in-compatibility graph (b). Colors (labels) of the verticesare circled.the value of cj . It is therefore straightforward to derivean example set EH from the colored IAjB . Attributeset for these examples is B. Each vertex in IAjB is anexample in set EH . Color cj of the vertex is the classof the example.EG is derived as follows. For any value of cj and com-bination of values of attributes in A, ci = G(A; cj) isdetermined by looking for an example ei in row A(ei)and in any column labeled with the value of cj . If suchexample exists, an example with attribute set A[fcjgand class ci = F (ei) is added to EG.Decomposition generalizes every unde�ned (\-") entryof PAjB in row a and column b, if a correspondingexample ei with a = A(ei) and column B(ei) withthe same label as b is found. For example, an entryPAjB [<hi>,<lo,hi>] of partition matrix in Figure 2.awas generalized to hi because the column <lo,hi> hasthe same label as columns <lo,lo> and <hi,lo>.In our implementation, the incompatibility graph isconstructed directly from the set of examples, avoidingthe construction of partition matrix for e�ciency rea-sons. The algorithm �rst sorts the examples EF basedon the values of attributes in A and values of ci. The



Input: Initial set of examples describinga single output conceptOutput: Its hierarchical decompositionget an initial example set EF0 and mark it decomposablej  1while 9 decomposable example set EFi that partiallyspeci�es ci = Fi(x1; : : : ; xm) with m > 2 doevaluate all possible partitions AjB of X = hx1; : : : ; xmisuch that A [B = X, A \ B = ;, and jjBjj � bselect the best partition AjBif EFi is decomposable using AjB thendecompose EFi to EG and EH , such thatci = G(A; cj) and cj = H(B), where G and Hare partially speci�ed by EG and EHmark EG and EH decomposablej  j + 1else mark EFi non-decomposableAlgorithm 1 The decomposition algorithmexamples with the same A(ei) constitute groups thatcorrespond to rows in partition matrix PAjB. Withineach group, examples with the same value of ci con-stitute subgroups. Two examples that are in the samegroup but in di�erent subgroups have a correspondingedge in IAjB .3.3 DECOMPOSITION ALGORITHMThe decomposition aims to discover a hierarchy ofconcepts described with example sets that are over-all less complex than the initial one. Since an exhaus-tive search is prohibitively complex, the decompositionuses a suboptimal iterative algorithm (Algorithm 1).In each step the algorithm tries to decompose a singleexample set of the evolving structure. It evaluates allpossible disjoint partitions of the attributes and selectsthe best one. This step requires a so-called partitionselection measure. A possible measure is the number ofvalues of the new concept �(AjB). The best partitionAjB is the one with the lowest �(AjB).An alternative measure for the selection of partitionsis based on the complexity of function F . Let Fbe de�ned on attributes xi 2 XF with class vari-able yF . In this attribute-class space, there are a to-tal of N(XF ; yF ) = jjyF jjQxi2XF jjxijj possible func-tions, where jjyF jj and jjxijj represent the cardinal-ities of value sets of yF and xi, respectively. Thenumber of bits to encode F is therefore �(F ) =log2N(XF ; yF ) = (log2 jjyF jj)Qxi2XF jjxijj. Decom-position prefers to discover functions of low complex-ity, so the measure is therefore de�ned as �(AjB) =�(G) + �(H).

The decomposition algorithm will decompose EF andthe function F it partially represents only if its decom-posed functions G and H are overall less complex thanF . Therefore, the partition AjB can be used to decom-pose EF to EG and EH if and only if �(AjB) < �(F ).We say that example set EF is decomposable if thereexists a partition AjB with this property.3.4 COMPLEXITY OF DECOMPOSITIONALGORITHMThe time complexity of single step decomposition ofEF to EG and EH , which consists of sorting of EF ,deriving the incompatibility graph and coloring it, isO(N logN) +O(Nk) +O(k2) where N is the numberof examples in EF and k is the number of vertices inIAjB . For any bound set B, the upper bound of k iskmax = (maxxi2X jjxijj)b where b = jjBjj. The num-ber of disjoint partitions considered by decompositionwhen decomposing EF with m attributes isbXj=2�mj � � bXj=2�emj �j = O(mb)The highest number of n�2 decompositions is requiredwhen the hierarchy is a binary tree, where n is thenumber of attributes in the initial example set. Therunning time of the decomposition algorithm is thusO�(N logN +Nkmax + k2max) nXm=3mb� == O�nb+1(N logN +Nkmax + k2max)�Therefore, the algorithm's complexity is polynomialin N , n, and kmax. Note that the bound b is a user-de�ned constant. This analysis clearly illustrates thebene�ts of setting b to a su�ciently low value. In ourexperiments, b was set to 3.3.5 IMPLEMENTATIONThe machine learning method based on function de-composition was implemented in the C language as asystem called HINT (Hierarchy INduction Tool). Thesystem runs on several UNIX platforms, including HP-UX, SGI Iris, and SunOS. The de�nition of domainnames and examples, and the guidance of the decom-position is managed through a script language.4 EXPERIMENTAL EVALUATIONWe experimentally evaluated the decompositionmethod using the following datasets:



MM4 A function y = MIN(x1;AVG(x2;MAX(x3;x4); x5)) with 4-valued attributes and class.While the de�nition of MIN and MAX is stan-dard, the function AVG computes the average ofits arguments and rounds it to the closest integer.LENSES A small domain taken from UCI machinelearning repository (Murphy and Aha 1994). Us-ing patient age, spectacle prescription, astigma-tism, and tear production rate each example de-scribes whether the patient should wear soft orhard contact lenses or no lenses at all.MONK1 and MONK2 Well-known six-attributebinary classi�cation problems taken from thesame repository (Murphy and Aha 1994, Thrunet al. 1991). Attributes are 2 to 4-valued.MONK1 has an underlying concept (x1 = x2)OR x5 = 1 and MONK2 the concept xi = 1 forexactly two choices of i 2 f1; : : : ; 6g.CAR and NURSERY For these two domains hi-erarchical classi�ers in DEX (Bohanec and Ra-jkovi�c 1990) formalism already existed. Thesewere used to obtain a set of examples from whichdecomposition tried to reconstruct the original hi-erarchies. CAR evaluates cars based on their priceand technical characteristics. This simple modelwas developed for educational purposes and is de-scribed in (Bohanec and Rajkovi�c 1988). NURS-ERY is a real-world model developed to rank ap-plications for nursery schools (Olave et al. 1989).The original datasets are noiseless. They completelycover the attribute space for all domains other thanMONK1 and MONK2, where the coverage is 28.7%and 39.1%, respectively. Some other domain charac-teristics are given in Table 2.The decomposition used column multiplicity as a par-tition selection measure. When the � complexity mea-sure was used instead, the results were similar and arenot shown here.The bound set size b was limited to the maximum ofthree elements. The decomposition times on HP J210workstation were all below 2 seconds for all the do-mains other than NURSERY, for which HINT requiredabout 20 seconds for the largest training sets.The experimental evaluation addressed the classi�ca-tion accuracy of HINT and its ability to derive a com-prehensible and meaningful structure, possibly simi-lar to the anticipated one. The classi�cation accuracylearning curves were computed, where the datasets

Domain n N Class names and theirrelative frequenciesMM4 4 1024 0/0.27, 1/0.42, 2/0.29, 3/0.02LENSES 4 24 hard/0.17, soft/0.21, no/0.62MONK1 6 124 0/0.5, 1/0.5MONK2 6 169 0/0.621, 1/0.379CAR 6 1728 unacc/0.70, acc/0.22,good/0.04, v-good/0.04NURSERY 8 12960 unacc/0.33, acc/0.0001,v-acc/0.03, prior/0.33,h-prior/0.31Table 2: Some characteristics of domains used in theexperiments. n is the number of attributes and N thedataset size.were split to training and test sets of sizes p and 1�p,respectively, for p from 10% to 90%. HINT deriveda concept hierarchy and corresponding classi�er usingthe examples in the training set and was tested forclassi�cation accuracy on the test set. For each p, theresults are the average of 10 randomly chosen splits.The learning curve is compared to the one obtainedby C4.5 inductive decision tree learner (Quinlan 1993)run on the same data. C4.5 used the default optionsexcept for -m1, which was observed to obtain a betterclassi�cation accuracy than the default -m2. Accuracyis measured on unpruned decision trees for the samereason. For each p, the signi�cance of the di�erencebetween C4.5 and HINT is determined using a pairedt-test with � = 0:01 (99% con�dence level).The learning curves are given in Figure 3. For all thedomains other than LENSES, HINT outperforms C4.5.With more than 20% of examples in the training set,this di�erence is always signi�cant. Moreover, HINT'slearning curves converge faster to the desired 100%,which is in turn never reached by C4.5. For LENSES,there are no signi�cant di�erences in the classi�cationaccuracy of the two learners. It is also interestingto note that in MM4 C4.5's accuracy decreases withhigher coverage of example space, which may be ex-plained with decreased generalization.HINT was further tested on the data sets for MONK1and MONK2 used in the detailed study of 25 ma-chine learning algorithms (Thrun et al. 1991). Forboth MONK1 and MONK2, the training set was thesame as our original data set described above. Thetwo test sets used in the study consisted of 432 ex-amples that completely covered the attribute space.For MONK1, the accuracy of HINT is 100%. In thestudy (Thrun et al. 1991), this score was achieved by9 learners: three variants of AQ17, Assistant Profes-sional, mFOIL, CN2, two variants of Backpropagation,
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(f) NURSERYFigure 3: Learning curves for HINT (solid line with �) and for C4.5 (dashed line with �). When, for a speci�crelative training set size p, the classi�cation accuracy of HINT is signi�cantly better than that of C4.5, HINT'sdata points are marked with �.and Cascade Correlation. For MONK2, the accuracyof HINT is 97.7%. In the same study, four learnersperformed better: AQ17-DCI, two variants of Back-propagation, and Cascade Correlation. It should benoted that these results were obtained by HINT with-out tuning in less than 0.3 seconds of CPU time onHP J210 workstation.For each of the domains and with increasing p, HINTconverged to a single concept structure. These areshown in Figures 4 to 6, with the names of attributesand concepts, and cardinality of their value sets. ForMM4, this is the anticipated structure except for theconcept AVG(x2;MAX(x3; x4); x5)), which HINT ad-ditionally decomposed by introducing an intermediateconcept c3. For MONK1, HINT discovered the antici-pated hierarchy MONK1 = F1(c1; x5) c1 = F2(x1; x2)with F1 and F2 matching the expected disjunctive andequality functions. For MONK2, because of disjunc-

tive condition on a bound and free set it was impossibleto derive concepts comparable to the original conceptde�nition. However, the discovered concept hierarchyis a reformulation of the target concept using func-tions that count 1's. For LENSES, HINT discoveredthe structure in Figure 4 which we did not try to inter-pret without the domain expert. For CAR and NURS-ERY (Figures 5 and 6), the structures discovered werevery similar to the original DEX models. In fact, theywere the same except that some original DEX interme-diate concepts were further decomposed. It should beemphasized that we consider this similarity of conceptstructures as a most signi�cant indicator of success ofour decomposition-based learning method.
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doors/4 persons/3Figure 5: Original (left) and discovered structure (right) for CAR5 CONCLUSIONWe introduced a new machine learning approach basedon function decomposition. A distinguishing featureof this approach is its capability to discover new, in-termediate concepts, organize them into a hierarchi-cal structure, and de�ne the relationships between theattributes, newly discovered concepts, and target con-cept. In their basic form, these relationships are spec-i�ed by newly constructed example sets. In a way,the learning process can thus be viewed as a processof generating new, equivalent example sets, which areconsistent with the original example set. The new setsare smaller, have smaller number of attributes, andintroduce intermediate concepts. Generalization alsooccurs in this process.We have evaluated the decomposition-based learningmethod on six datasets. In terms of classi�cation ac-curacy, the decomposition signi�cantly outperformedC4.5 in all but one domain. The examples also showthat the decomposition is useful for discovery of newintermediate concepts. For example, the decomposi-tion was able to discover an appropriate concept hier-archy approved by domain experts for a rather com-plex real-world NURSERY domain.

The classi�cation accuracy results may be biased be-cause we have mostly used the domains where we an-ticipated the hierarchies discoverable by decomposi-tion. However, MONK2 is a counter example wheredecomposition was not able to discover the originalde�nition of the target concept, but rather unexpect-edly its reformulation.The decomposition approach as presented in this pa-per is limited by that there is no special mechanismfor handling noise and continuous attributes. How-ever, preliminary results on using an extended versionof decomposition for continuously-valued data sets in(Dem�sar et al. 1997) and preliminary results on noise-handling extension strongly encourage further devel-opments in this direction.ReferencesAshenhurst, R. L.: 1952, The decomposition of switch-ing functions, Technical report, Bell LaboratoriesBL-1(11), pages 541{602.Biermann, A. W., Fair�eld, J. and Beres, T.: 1982,Signature table systems and learning, IEEETrans. Syst. Man Cybern. 12(5), 635{648.
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