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Abstract: An approach to decision making that combines multi-attribute decision making tech-
niques with expert systems is described. In this approach, knowledge about a particular decision
making problem is represented in the form of tree-structured criteria and decision rules. Decision
making is supported by an expert system shell. This chapter focuses on the part of the shell that
supports evaluation, explanation and analysis of alternatives. The corresponding algorithms are
presented and discussed.

1 Introduction

In general, the decision making problem can be defined as follows:

Given a set of alternatives A = {a1, a2, . . .} and (somehow expressed) aims or goals of the decision
maker,

find alternative ai ∈ A that best satisfies the goals.

Problems of this kind can be found in almost any field of human activity, ranging from every-
day personal decisions to more complex problems in economy, management, medicine, etc. The
complexity of such problems usually originates in:

• complex and often incomplete, uncertain or conflicting knowledge of how to define and achieve
the goals,

• numerous and/or loosely defined alternatives,

• a large number of parameters that influence the decision,

• the presence of several decision making groups with different objectives, and

• time constraints and other resource limitations imposed on the decision making process.

A number of methods and computer programs have been developed to support decision makers in
solving more or less complex decision problems (Humphreys and Wisudha 1987). They are usually

∗A reformatted version of the chapter published in Computer aided decision analysis: Theory and applications
(ed. Nagel, S.), 189–204, Quorum Books, 1993.
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studied within the framework of decision support systems (Keen and Scott Morton 1978, Alter
1980), operations research and management sciences, decision theory (French 1986) or decision
analysis (Phillips 1986). In a broad sense, expert systems, which originate in artificial intelligence,
can also be considered systems that solve and explain complex repetitive decisions (Efstathiou and
Mamdani 1986; Turban 1988; Klein and Methlie 1990).

In this chapter we show how multi-attribute decision making methods can be combined with
expert systems, in particular how to support explanation and analysis of decisions. The concept
of multi-attribute decision making is presented in section 2. Section 3 gives a formal description of
knowledge representation that is used in the proposed approach. Methods and algorithms for the
evaluation, explanation and analysis of alternatives are presented in sections 4, 5 and 6. Finally,
practical applications of this approach are summarized in section 7 and discussed in section 8.

2 Multi-attribute decision making

In multi-attribute decision making, the decision problem is decomposed into smaller, less complex
subproblems (Keeney and Raiffa 1976; Chankong and Haimes 1983; French 1986). Such subprob-
lems are represented by a set of criteria (or attributes) X = {x1, x2, . . . , xn}. Criteria are variables
that take values from the corresponding value domains X1, X2, . . . , Xn.

Each alternative a ∈ A is measured and described by a vector of values

a = 〈v1, v2, . . . , vn〉, vi ∈ Xi, i = 1, 2, . . . , n.

The alternative is then evaluated, usually in two steps. First, the decision maker’s preferences pi

of a according to each separate criterion xi are obtained:

pi = fi(vi), i = 1, 2, . . . , n.

Here, fi is a partial utility function defined by the decision maker for each xi. The preferences pi

are usually expressed as numbers on a certain interval, for example [0, 1].

The total utility of a is finally aggregated by the function F :

u(a) = F (p1, p2, . . . , pn).

In practice, F is most commonly expressed as a weighted sum where weights wi are defined by the
decision maker:

F (p1, p2, . . . , pn) =
n∑

i=1

wipi.

The alternatives are finally ranked according to the total utilities. In general, the alternative with
the highest utility should be selected as the best one.

Note, however, that only the main ideas of multi-attribute decision making have been presented
above; the details are treated quite differently in different methods. For example, criteria may be
additionally structured into trees. There are also considerable variations in the representation and
assessment of alternatives and utility functions (French 1986; Humphreys and Wisudha 1987).

The most common drawback of existing multi-attribute methods, at least for some classes of
problems, is the need of translating the decision makers’ knowledge about a decision problem
into numbers and functions. Experience with expert systems (Turban 1988; Klein and Methlie
1990) indicates that this is not always necessary. There are decision problems in which qualitative
judgement prevails over more or less exact quantitative evaluation. For such problems, it is quite a
natural choice to use models that incorporate qualitative elements as well, for example qualitative
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(descriptive, linguistic, ordinal) variables and rules. Expert system applications have confirmed
that such an approach is not only feasible, but can also provide some valuable features: explicit and
flexible knowledge representation (Fox 1985), transparency (Lévine et al. 1990), natural language
dialogues (Vari and Vecsenyi 1988) and explanation of reasoning (Efstathiou and Mamdani 1986).

In the following sections we show how explanation facilities can be gained by combining multi-
attribute and expert system paradigms. The proposed approach is based on an explicit articulation
of knowledge about a particular decision making problem. Knowledge representation is specific
and oriented toward multi-attribute problems. It consists of tree-structured criteria and utility
functions which are represented by rules rather than formulas.

3 Knowledge representation

Knowledge representation for multi-attribute decision making is based on a tree of criteria T =
(X , S), where:

X is a set of criteria {x1, x2, . . . , xn}; each criterion xi may take values from the corresponding
value domain Xi.

S is a mapping from X to the power set of X . For each criterion, S defines the set of its immediate
descendants (sons) in the tree. Only such mappings S are permitted which structure criteria
into a single (connected) tree whose root is x1.

Criteria x for which S(x) = ∅ are leaves of the tree. They are also referred to as basic criteria.
The remaining ones are called aggregate criteria.

Domains X1, X2, . . . , Xn are assumed to be discrete and finite. They generally consist of words,
not numbers; words such as good or low can be used. Numerical quantities can be expressed as
intervals of values; each interval is treated as a discrete domain element. It is also recommended
to order domain elements by preference from “bad” (non-preferred) to “good” (highly preferred)
values, for example {bad, acceptable, good, excellent} or, for price, {high, medium, low}.

The tree of criteria represents the structure of a particular decision problem. The purpose of
the second component of the decision knowledge base, utility functions, is to define the relation
between aggregate criteria and their descendants in the tree. For each aggregate criterion xk, the
corresponding utility function

Fk : Xk1 ×Xk2 × · · · ×Xkm −→ Xk

should be defined by the decision maker. Here, Xk1 , . . . , Xkm
denote the value domains of all the

descendants of xk.

When different decision groups with different interests are involved in the decision making process,
each group may define their own set of utility functions. Therefore, more than one function can
be defined for each aggregate criterion, as shown in figure 1.

Utility functions Fk are represented by elementary decision rules of the form

if xk1 = vk1 and . . . and xkm = vkm then xk = vk,

where vki
and vk denote single values taken from domains Xki

and Xk, respectively.

The consistency of rules is required. This means that the rules should be unique with respect to
their conditional parts. On the other hand, the completeness of rules is not required, meaning
that for some combinations of values vk1 , . . . , vkm

there might be no corresponding rules. The set
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of rules that correspond to a particular aggregate criterion is usually represented in a tabular form
(see, for example, table 2).

After the criteria tree and utility functions have been defined, the evaluation of alternatives can
start. The alternatives are first measured and described by values of basic criteria. The utility
functions are then applied in a bottom-up manner in order to obtain aggregate values for each
alternative. These values, particularly the one that has been assigned to the root, are finally used
to select the best alternative.
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Figure 1: Criteria tree with utility functions and alternatives

Figure 1 illustrates a decision knowledge base after alternatives have been evaluated. There are
two aggregate criteria, x1 (the root) and x4. The corresponding utility functions are F1 and F4.
Note that in the presence of different decision making groups, more than one function can be
defined for each aggregate criterion.

There are two alternatives shown in figure 1. They are described by values v2, v3, v5 and v6 that
are assigned to basic criteria x2, x3, x5 and x6. Evaluation results v4 and v1 for each alternative
have been obtained by functions F4 and F1, respectively. The evaluation is performed separately
for each decision making group. Therefore, when there are more groups, a set of evaluation results,
consisting of v4 and v1, is obtained for each group.

An example of a real-world criteria tree is shown in figure 2. The tree was designed in a project
whose goal was to evaluate microcomputers with respect to their appropriateness for education
in primary and secondary schools of the Republic of Slovenia (Rajkovič et al. 1985). Figure
2 actually presents only the subtree that was used to evaluate microcomputer hardware. The
whole tree, which additionally included software and commercial criteria, was about twice as
big. In figure 2, aggregate and basic attributes are represented by upper-case and lower-case
letters, respectively, and followed by the corresponding value domains. According to the tree,
microcomputer Hardware is determined by three main groups of criteria: Environment, Processor
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• HARDWARE unaccept, accept, good, exc
• ENVIRONMENT unaccept, accept, good

• BAS COMM unaccept, accept, good
• monitor unaccept, accept, good
• keyboard unaccept, accept, good

• PERIPH unaccept, accept, good
• printer unaccept, accept, good
• EXT MEM unaccept, accept, good

• cassettes no, yes
• disk none, accept, good

• add periph no, yes
• CONNECTIONS unaccept, accept, good

• loc network none, accept, good
• INTERFACE unaccept, accept

• std interf no, yes
• a/d conv no, yes

• upgrade bad, accept, good
• PROCESS unaccept, accept, good

• GRAPHICS unaccept, accept, good
• bw graph unaccept, accept, good
• col graph none, accept, good
• characters unaccept, accept, good

• memory unaccept, accept, good

Figure 2: Criteria tree for the evaluation of microcomputer hardware

and capabilities to Upgrade the system. The first two are additionally decomposed. For example,
the Environment is decomposed into Basic Communication, Peripherals and Connections.

MONITOR KEYBOARD BAS COMM
unaccept unaccept unaccept
unaccept good unaccept
accept accept accept
accept good accept
good unaccept unaccept
good accept good

Table 1: Elementary decision rules for Basic Communications

Table 1 presents a simple set of elementary rules that define Basic Communications according to
the quality of Monitor and Keyboard. Note the incompleteness of this table: some combinations of
values of Monitor and Keyboard, for example Monitor=good and Keyboard=good, are undefined
in the table.

The approach presented in this section has been implemented within an expert system shell DEC-
MAK (Bohanec et al. 1983, 1987; Rajkovič et al. 1988) and thoroughly verified in practice (see
sections 7 and 8). The shell interactively supports the decision maker in the knowledge acquisition
and evaluation stages of the decision making process.

It is beyond the scope of this chapter to describe knowledge acquisition techniques that are used
in DECMAK. They are based on an interactive dialogue for the acquisition of elementary decision
rules. Additional tools are available the present the whole knowledge base to the decision maker
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using different viewpoints and levels of detail (Rajkovič et al. 1988, Bohanec and Rajkovič 1987,
1988).

The following sections are focussed on techniques and algorithms that are used in DECMAK to
support the evaluation stage of the decision process. In this stage, the evaluation of alternatives,
explanation of results and analysis of alternatives take place.

4 Evaluation of alternatives and explanation of results

In this stage of the decision making process, the knowledge base, which we assume it has been
defined and verified in the previous stages, is used to evaluate alternatives. At the beginning, the
decision maker describes each alternative a ∈ A by a vector of values that correspond to all basic
attributes xb1 , xb2 , . . . , xbm

:

a = 〈vb1 , vb2 , . . . , vbm
〉, vbi

∈ Xbi
, i = 1, 2, . . . ,m.

In DECMAK, these descriptions are entered interactively, using a spreadsheet-like editor of alter-
natives.

It should be noted that DECMAK is also capable of handling incomplete and uncertain data about
alternatives by means of probabilistic and fuzzy distributions of values (Bohanec et al. 1983). For
simplicity, this feature is omitted from the following presentation.

After the alternatives have been described, they are evaluated by DECMAK. The evaluation
proceeds from bottom to the top of the criteria tree. The value vi of each aggregate criterion xi

is obtained by evaluating the corresponding utility function Fi. The function arguments are the
values vij

that are assigned to all the descendants of xi in the tree:

vi = Fi(vi1 , vi2 , . . .), vij
∈ Xij

.

In order to evaluate Fi, DECMAK searches for the decision rule that exactly matches the argu-
ments. If such a rule exists, it directly assigns the value to vi. Otherwise, the regression analysis
is applied over some of the remaining rules. Only the rules that slightly differ from the arguments
of the function are considered. The Euclidean distance is used as a heuristic measure of difference
between rules.

The evaluation of alternatives assigns values (utilities) to all the aggregate criteria in the tree.
These values determine the adequateness of each alternative according to decision maker’s prefer-
ences. The alternative that has got the most desirable values should be finally chosen.

However, some important questions usually emerge at this point:

• How were the results obtained? Why they are such? Are they appropriate?

• Are the results influenced by changes of basic criteria values and how? Which changes are
required in order to get a better (or worse) alternative?

• What are the advantages and disadvantages of a particular alternative? How does it compare
to some other alternative?

The evaluation results themselves are insufficient to answer these questions. Additional tools
that help the user to explain, justify and analyze the decision are needed. As shown below, the
rule-based approach offers quite useful support for such tasks.
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Obviously, the evaluation process itself can be easily explained in terms of decision rules that
have been triggered and criteria values that have been used. This is similar to the How? type of
explanation in expert systems.

There is, however, a problem with the explanation of results obtained by the regression analysis.
Due to its inherent “black-box” functioning, it is difficult to explain the computation itself. How-
ever, since it operates on a limited set of rules (usually, 2 to 5), these rules are shown to the user.
According to our experience, the users are able to justify the appropriateness of the computation
on the basis of this implicit information.

With DECMAK, the evaluation end explanation are performed interactively. The user can focus
attention to particular aggregate criteria, inspect and/or change rules and follow the detailed
explanation. This is often combined with what-if analysis, where the user changes descriptions of
particular alternatives, reevaluates them and compares the results with the original ones.

5 Selective explanation and comparison of alternatives

The explanation described above answers the question: How were the results obtained? Its main
role is to present a detailed overview of the evaluation process and to help the user in discovering
errors in the knowledge base and descriptions of alternatives. However, there is a question that is
usually more important in practice: Why are the results such? Unfortunately, the ultimate answer
is hidden in rules; they are basic facts that can be meaningfully explained only by the person who
defined them.

Nevertheless, some implicit and practically important answers can be gained by exploring the
evaluation results and relations among them. For example, if an alternative got a bad final utility,
one might be interested in sources (i.e., basic criteria values) that caused this result. For a better
overview of an alternative it is also useful to find its most important advantages.

For this purpose, a selective explanation algorithm is used in DECMAK. Its main role is to explain
a particular alternative in terms of its most advantageous or disadvantageous characteristics. The
explanation is selective because, instead of all, usually quite numerous criteria, only the most
relevant ones are shown in the form of subtrees of the whole criteria tree.

This algorithm operates by searching for such maximal connected subtrees of the whole criteria tree
in which a particular alternative evaluates to very bad or, alternatively, very good. To determine
whether a value is very bad or very good, a simple heuristics is used. Since the criteria domains
are usually preferentially ordered (95% of domains used in about forty practical applications of
DECMAK were such), the leftmost element of each domain is considered very bad and the rightmost
very good by default. When this is inappropriate, the user is allowed to explicitly redefine the sets
of very good and very bad values.

An example of selective explanation is shown in figure 3. The quality of hardware of a particular
microcomputer is explained on the basis of the criteria tree from figure 2. The default settings
have been used in order to determine very bad and very good values.

Almost the same algorithm can be used also for the selective comparison of alternatives, which is
needed for:

• comparison of two different alternatives,

• discovering changes of one alternative during the what-if analysis, and

• comparison of the same alternative that was evaluated by utility functions of different decision
making groups.
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Advantages:

COL GRAPH is good

INTERFACE is accept
because STD INTERF is yes
because A/D CONV is yes

ADD PERIPH is yes

CASSETTES is yes

Disadvantages:

HARDWARE is unaccept
because ENVIRONMENT is unaccept

because BAS COMM is unaccept
because MONITOR is unaccept

because CONNECTIONS is unaccept
because LOC NETWORK is none

because PROCESS is unacc
because GRAPHICS is unaccept

because BW GRAPH is unaccept
because CHARACTERS is bad

Figure 3: Selective explanation of a microcomputer’s hardware

The comparison algorithm differs from the explanation one only in the condition that must be
satisfied in all nodes of the extracted subtrees. Here, the condition is satisfied if the first alternative
is (strictly) better than the second one or, alternatively, the second one is better than the first. The
relation better (represented by ‘>’ in figure 4) is again determined from the preferentially ordered
domains or explicitly given by the user. Figure 4 presents an example of selective comparison of
two microcomputers.

Alternative A is better in:

BAS COMM is better (good > accept)
because MONITOR is BETTER (good > accept)

ADD PERIPH is better (yes > no)

Alternative B is better in:

HARDWARE is better (exc > accept)
because PROCESS is better (good > accept)

because GRAPHICS is better (good > accept)
because BW GRAPH is better (good > accept)
because COL GRAPH is better (good > none)

PRINTER is better (good > accept)

Figure 4: Selective comparison of two microcomputers

8



6 Option generation

Another important aspect of the analysis and implementation of the decision is to find such small
changes in descriptions of an alternative which cause degrading or upgrading its performance. The
findings about changes that might degrade the alternative can be particularly useful in the stage
of its implementation; once the most critical characteristics have been identified, it is much easier
for the implementer to treat them carefully. On the other hand, the information about the changes
that upgrade the alternative can serve a guideline for possible improvements of the alternative.

In DECMAK, such information can be gathered by an option generator. To describe the algorithm,
let us concentrate on a single aggregate criterion y. Let x1, x2, . . . , xk be its descendants in the
criteria tree. Therefore, the relation between the criteria is that

y = F (x1, x2, . . . , xk).

We also assume that an alternative a ∈ A has been already evaluated on y and denote with

v = 〈v1, v2, . . . , vk〉

the vector of values that have been assigned to x1, x2, . . . , xk for this alternative. Let u be the
utility of the alternative, obtained by

u = F (v).

The task of the option generator is then to determine the smallest changes ∆v of vector v which
would lead to

F (v + ∆v) = z,

such that z > u for upgrading the alternative or z < u otherwise.

At the beginning, the option generator implicitly completes the table of rules that define F by
adding all the missing rules; the regression analysis from section 5 is used for this purpose. Then,
the set of all rules that yield the value of z is determined. These are the rules of the form:

if x1 = w1 and . . . and xk = vk then y = z.

Each such rule corresponds to the assignment of values

z = F (w1, . . . , wk) = F (w).

Therefore, F (w) = F (v + ∆v), so
∆v = w − v.

However, such ∆v need not be the smallest one; it should be compared to all the difference vectors
that are determined from the remaining rules which assign y = z. Therefore, all pairs of rules
such that z = F (w1) and z = F (w2) are compared by the option generator. When upgrading
alternatives, ∆v1 that follows from the first rule is eliminated if w1,i ≥ w2,i for all i = 1, 2, . . . , k.
When finding the smallest changes that degrade alternatives, the above condition is replaced by
w1,i ≤ w2,i.

The extension of this algorithm from one aggregate criterion y to any subtree of y is straightforward:
the algorithm should only be applied recursively on all the aggregate descendants of y.

An example of the option generator output is shown in figure 5. It was generated by applying the
above algorithm on rules from table 1. Note, however, that this table is extremely simple, so the
output is not as interesting and valuable as when treating more complex tables and subtrees.
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Value 1: MONITOR=accept
Value 2: KEYBOARD=good
Utility: BAS COMM=accept

BAS COMM becomes unaccept
if ( MONITOR becomes unaccept ) or
if ( MONITOR becomes good and

KEYBOARD becomes unaccept ).

BAS COMM becomes good
if ( MONITOR becomes good and

KEYBOARD becomes accept ).

Figure 5: Output of the option generator

7 Applications

The DECMAK system has been applied in about 40 practical decision making problems. They
varied from simple, personal decisions, like job or car selection, to complex group decision problems,
such as:

1. evaluating mainframe computer systems (8 applications so far);

2. selection of computers for schools (4 applications);

3. microcomputer selection;

4. evaluation of production control software;

5. data base management system selection (2 applications);

6. trading partner selection;

7. evaluation of applications for nursery schools;

8. matching people to jobs;

9. expert team selection;

10. project feasibility estimation;

11. performance evaluation of public enterprises.

The first part of the list (applications 1 to 5) indicates that DECMAK has been extensively used
in decisions related to computers. The main reason for this is the computer science background
of the authors of the system. In these problems, it was convenient for the authors to play a dual
role of decision analysts and computer consultants. Nevertheless, the applications numbered 6 to
11 show that the usefulness of DECMAK is not limited only to computer-oriented problems.

The complexity of a particular decision problem is reflected in the size of the knowledge base and
the number of considered alternatives. These data for some of the above problems are presented
in table 2.
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Number of
Application Basic Aggregate Alterna-

criteria criteria tives
1.a 20 9 6

b 67 45 2
c 17 9 3
d 35 24 8

2.a 11 6 6
b 12 9 10
c 36 19 24

5. 74 29 3
6. 22 12 >20
7. 8 5 >2000
9. 16 8 164

10. 34 19 1
11. 12 9 55

Table 2: The complexity of some DECMAK applications

8 Discussion

One of the main motivations for combining multi-attribute decision making with the knowledge-
based approach in DECMAK was to improve the quality of decision making by the aid of expla-
nation. There are extremely rare decision situations where the criteria and alternatives are so
clear that they directly lead to optimal solutions without any further analysis and explanation.
Usually, a great deal of uncertainty and missing information is involved, important criteria may be
overlooked or treated inappropriately, etc. Therefore, the obtained results should not be accepted
until they are carefully investigated, justified and understood by the decision maker.

The proposed approach is based on a structured and explicitly articulated knowledge base which
can be argued, verified and documented. Its structure is specially adapted for multi-attribute de-
cision problems. Although the structure is relatively simple compared to common expert systems,
it has been found quite general and flexible in practice. In the stage of knowledge acquisition,
the main advantages are (1) easy acquisition of elementary decision rules by an interactive man-
machine dialogue and (2) powerful capabilities for explaining the whole knowledge base by means of
machine learning techniques. These are presented and discussed elsewhere (Bohanec and Rajkovič
1988; Rajkovič and Bohanec 1991).

In the evaluation stage of the decision making process, the knowledge base is applied consistently
on all alternatives in order to obtain and explain their utilities. The evaluation approximately
corresponds to reasoning in common expert systems. However, due to the specifics of the problem,
it is much more “function-oriented”; it basically calculates function values. There is no inference
based on logic, theorem proving, etc. The order of evaluation of rules is strictly determined by the
structure of criteria.

In all practical applications of DECMAK (section 7), some kind of explanation was needed (and
done) in the evaluation stage. Usually, at least some of the evaluation results were in disagreement
with the decision maker’s expectations. It was necessary to investigate them in more detail and
find out the reasons for the disagreement, which could have been caused by erroneous rules, inap-
propriate descriptions of alternatives, overlooked criteria or wrong expectations. In this respect,
the explanation by tracing the triggered rules (section 4) has been found useful, but not as much
as we had originally expected. It was invoked quite rarely, mainly to explain unexpected values
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assigned to a single aggregate criterion. In our opinion, the main reason for this is in low and
nonselective informativity of this kind of explanation. The decision maker is usually at the same
time the author and user of the rules. For this reason, the triggered rules hardly provide any new
information for him.

In order to discuss alternatives within the decision making group and to justify the decision, an
overall (aggregate) explanation of each alternative is needed. In practice, it seems that the selective
explanation algorithm (section 5) suits extremely well for this purpose. It was used in all practical
decision problems. The decision makers considered it an important support tool for the explanation
and verification of the decision. Its results were also very useful in preparing reports and other
presentations related to the decision. Usually, only the translation of the printouts (such as the
ones in figure 3) into ordinary sentences was sufficient to provide a comprehensible explanation.

It seems that the main power of the selective explanation is in its ability to extract and group to-
gether the criteria and values that most relevantly determine the quality of a particular alternative.
However, in the current implementation of DECMAK, the “relevance” of criteria is determined by
a very simple heuristic inspection of criteria domains. Further research is suggested at this point
to find more general and robust measures of relevance, for example by taking into account also the
underlying utility functions.

The option generator (section 6) is usually applied after a limited set of possible candidates for the
best alternative has been identified. These are then thoroughly analyzed, mainly to isolate critical
characteristics that can easily degrade them in the implementation stage. When the decision
makers are in a position to influence the alternatives, for example to require some modifications
of computer hardware from the distributor, the possibilities of upgrading them are also interesting
for investigation. According to our experience, the usefulness of the option generator heavily
depends on the decision problem. There were problems where it was not needed at all, for example
in selecting an expert team and evaluating application for nursery schools. Its role was more
important in decisions related to computers and public enterprises. However, there was a problem
where a decision had to be made whether to continue or abandon a large software development
project. All aspects of this project were thoroughly analyzed almost exclusively by the option
generator.

9 Conclusion

The decision making approach presented in this chapter combines two techniques, multi-attribute
decision methods and expert systems. It is based on an explicit articulation of knowledge about a
particular decision problem. The knowledge is represented by tree-structured criteria and utility
functions, defined by elementary decision rules.

The approach is supported by an expert system shell DECMAK. It consists of tools which support
interactive knowledge acquisition and evaluation of alternatives. The main emphasis is on the
explanation and analysis of the evaluation process.

DECMAK has been verified in about forty practical decision making situations. The results
confirmed the importance of the explanation facilities. Their availability motivated the decision
makers to think about, verify, justify and explore decisions. We strongly believe this is one of the
key elements that can improve the effectiveness and justification of decisions.

Among the algorithms presented in this chapter, the selective explanation one has been found the
most valuable in practice. Its main advantage is the ability to explain alternatives by selecting
only the most relevant information and presenting it to the user in a structured form.
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