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Abstract. In machine learning, ROC (Receiver Operating Characteristic) analy-
sis is widely used in model selection when we consider both class distribution
and misclassification costs that must be given at test time. In this paper we con-
sider the case of a dynamic process, such that the class distributions are differ-
ent in different time periods or states. The main problem is then to decide when
to change models according to the different states of the generating process. In
this paper we use a control chart to choose models for the process when mis-
classification costs are considered. Four strategies are considered and model
selection approaches are discussed.

1. Introduction

In machine learning, ROC analysis for two classes measures the quality of models by
studying the distribution of true positive rates and false positive rates of models. Both
the class distribution and misclassification costs may be unknown during training time
whereas they must be known at application time in order to select a suitable model. In
practice, however, it may be difficult to know the exact class distribution which may
change over time. In such cases, we need to know which point is a change point from
one class distribution to another even when the class distributions in different periods
may be known. Suppose instances {(Xt, ,yt), t=1,2,…} is a multivariate time series,
where yt is a binary class and Xt is a vector of independent features . From the ROC
analysis point of view, we need to know the class distribution of yt in order to choose
a suitable model. In other words, we need to know where the change point from on
state to another is.

The change-point detection has been discussed in [1,2,3]. A control chart, or cu-
mulative count control chart (CCC-chart) can detect the change of class distributions
that may be skewed in a process. This paper considers model selection by using CCC-
chart.

This paper is organized as follows. Section 2 briefly reviews ROC analysis and
CCC-chart. In Section 3, different situations from cost viewpoints will be taken into
account and assumptions will be introduced. We distinguish four strategies for the dif-
ferent states of the process. Section 4 will give the costs for the four strategies and
some analytical expressions for the average number of instances classified are de-
rived. An example is given in section 5. Section 6 concludes.



2. ROC analysis and CCC-chart

ROC analysis [4, 5] studies the distributions of points (F,T) of models on a two-
dimensional plane. Here, F stands for false positive rate (the ratio between the number
of negative instances incorrectly classified and the total number of negative in-
stances), and T stands for true positive rate (the ratio between the number of positive
instances correctly classified and the total number of positive instances).

Assume that the relative frequency of negative instances in the test dataset is p. As-
sume that the cost for a correct classification is zero; the cost for classifying a positive
instance to be a negative one is Cpn and the cost for classifying a negative instance to
be a positive one is Cnp. Then, the expected cost of applying model 1 with false posi-
tive rate and true positive rate (F1,T1) in the ROC space is (1-p)(1-T1)Cpn+pF1Cnp.
Similarly, the expected cost for model 2 is (1-p)(1-T2)Cpn+pF2Cnp. Obviously, if (1-
p)(1-T1)Cpn+pF1Cnp>(1-p)(1-T2)Cpn+pF2Cnp, then model 2 will be chosen. Otherwise,
we shall choose model 1.

Assume labelled instances appear within a dynamic process one after another inde-
pendently, and some candidate models can classify the instances into positives and
negatives. An example would be a production line, where most items are manufac-
tured correctly (positive) but some have production errors (negative). The number of
positive instances until the next negative instance is observed is a geometric random
variable. Let a process consist of two states S1 and S2 with relative frequencies of
negative instances p1 and p2, respectively, where p1<p2. Let the probability of the
event that the number of positive instances  until a negative instance being observed is
less than n0 be α, or P(n≤n0)= α. Since n is a geometric random variable, we have
P(n≤n0)= α=−− 0)1(1 1

np  or n0=log(1-α)/log(1-p1) if the process is in S1. Or if

n≥n0+1, the process may be in S1 with a probability 1-α and n is called a type 1 signal
(denoted as s1). If n≤n0, the process may have shifted to S2 with a probability 1-α and
n is here called a type 2 signal (denoted as s2). The approach here comes from CCC-
chart methods[6, 7].

Because signal s1 and s2 show the state with a probability, they may be false ones.
In order to confirm if a signal is true, an investigation may be carried out to check the
true state of the process, which raise the different strategies in section 3. We assume
that an investigation can recover the true state of the process. In what follows we
make the following assumptions:
(1) Model 2 is more suitable for S2 and model 1 is more suitable for S1.

(2) When the process is in S1, it may shift to S2 with a probability π12. When the pro-
cess is in S2, it may shift to another state with a probability π23.

3. Four Different Strategies

One may decide whether a control chart will be used to monitor the process for differ-
ent situations. We consider four possible strategies to decide when to switch between
the two models.
(1) Strategy 1: In this strategy, no control chart will be used for the process. Because



the true state is not known, either model 1 or model 2 can be used throughout.
(2) Strategy 2: In this strategy, no control chart will be used. In order to know the ex-

act state of the system, investigations for each instance are needed and two dif-
ferent models will be used according to the results of the investigations.

(3) Strategy 3: In this strategy, model 2 is used as soon as a signal s2 appears. Al-
though the signal s2 may be a false one, no investigation on this signal will be
carried out. In this strategy, the following two events may occur. Event A1 — Be-
fore the process shifts to S2, a signal 2s  appears when the process is in S1, and

then model 2 is used, and Event A2 — in S1, no signal 2s  appears. After the pro-

cess shifts to S2, a signal 2s  occurs when the process is in S2, and then model 2 is
used.

(4) Strategy 4: In this case, whenever a signal s2 occurs, an investigation will be car-
ried out to check the true state of the process. In this strategy, the following two
events may occur. Event 3A — before the process shifts to S2, several s2’s occur
and investigations are carried out. Model 2 is used until the process is confirmed
to be in S2 after a signal s2 appears, and Event 4A — in state 1, no signal 2s  ap-

pears. After the process shifts to S2, a signal s2 occurs in S2 and an investigation
is carried out and then model 2 is used.

4. Costs for the four strategies

Let Q1(i) (i=1,2) be the probability for signal is  to appear when the process is in state

1S  and model 1 is being used, and Q2(i) (i=1,2) be the probability for a type i signal to

appear when the process is in state 2S  and model 1 is still being used. Let
q1=(1-p1)(1-T1)+p1(1-F1) and q2=(1-p2)(1-T1)+p2(1-F1), then we have

∑
∈

− −−=
iZj

jj
i qqQ )1()1( 12

1
11)(1 π , ∑

∈

− −−=
iZj

jj
i qqQ )1()1( 23

1
22)(2 π , where i=1,2

The probability of observing a transition of the process from state 1S  to state 2S

since the process starts is ∑
∞

=

−− −−=
1

1
12

1
1122,1 )1()1(

j

jjqQ ππ .

Recall that 1T  and 1F  are the true positive rate and the false positive rate of model

1, respectively, and 2T  and 2F  are the true positive rate and the false positive rate of

model 2, respectively. Let the cost for investigating a signal be inC  and the cost for

maintaining the CCC-chart be chartC . Then, we can derive the following expressions
for the expected cost for each of our four strategies.

Lemma 1. The expected cost for strategy 1 using model i is
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Lemma 2. The expected cost for strategy 2 is
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Lemma 3. The expected cost for strategy 3 is
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Lemma 4. The cost for strategy 4 is
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5. Example

Let p1=0.002, p2=0.008, T1=0.995, T2=0.990, F1=0.004, F2=0.002, Cnp=1000, Cnp=1
and α=0.05. It can be shown that we should use model 1 in S1 and model 2 in S2, re-
spectively. When π12=0.00002, π23=0.00006, from Lemma 1, Lemma 2, Lemma 3 and
Lemma 4, we can obtain

A. If Cchart=0 and Cin==0, then c11=1265, c12=1131, c2=1081.5, c3=1130.1 and
c4=1081.7, both strategy 2 and strategy 4 are the best cases;

B. If Cchart=0 and Cin=0.5, then c11=1265, c12=1131, c2=34414, c3=1130.1 and
c4=1111.6, strategy 4 is the best;

C. If Cchart==100 and Cin=0.5, then c11=1265, c12=1131, c2=34414, c3=1230.1
and c4=1211.6, strategy 1 with model 2 used in both states S1 and S2 is the
best.

To sum up, the data analyst can choose a strategy to minimize the cost. Say, when
the cost for maintaining the CCC-chart is small or the cost for investigating the state
of the system is small, strategy 3 or strategy 4 may be the best choice. In other words,
maintaining the CCC-chart for the process is helpful in these cases.



6. Conclusions

When the class distributions of different states in the process are known and the
change point of the states is not known, it is hard to apply different models for the dif-
ferent states. This paper combines both ROC analysis and CCC-charts to optimize the
cost. Four different strategies have been considered and expressions for the expected
costs for each of these strategies have been obtained. This aids the data analyst in de-
ciding which strategy to choose under particular cost distributions.
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Appendix

It is easy to prove the following results. When the process is in state 1, the number of
instances immediately before the process has shifted to state 2 is a geometric random
variable with parameter π12, and expectation 1/ π12. The expected number of instances
since the transition of the process from state S1 to state S2 until it shifts to another
state, is 1/π23. Under event A1, the expected number of instances since the start of the
process until the appearance of the first signal s2 in S1 with model 1 being used is E1.
The probability of event A1 is p(A1) and the probability of event A2 is p(A2). Under
event A2, the expected number of instances since the start of the process until the time
of the transition from state S1 to state S2 and no s2 appearing during that time with



model 1 being used is E2. Under event A1 or A3, the expected number of instances
since the time of the first appearance of signal s2 until the transition from state S1 to
state S2 is E3. Under event A2, the expected number of instances since the time of the
transition from state S1 to state S2 until the appearance of the first signal s2 in state 2
with model 1 being used is E4. Under event A3, the expected number of signal s1 since
the appearance of the first signal s1 until the signal confirmed to be in state S2 is E5.

Proof of Lemma 1: The expected cost of applying model 1 in state 1 is (1-p1)(1-
T1)Cpn+p1F1Cnp. Similarly, the expected cost of applying model 1 in state 2 is (1-
p2)(1-T1)Cpn+p2F1Cnp. From the definition of strategy 1, and the above statement, we
can obtain Lemma 1.

Proof of Lemma 2: If model 1 is being used in state 1 and model 2 is being used in
state 2, the cost is ((1-p1)(1-T1)/π12+(1-p2)(1-T2)/π23)Cpn+(p1F1/π12+p2F2/π23)Cnp. In
order to know the exact state of the system, investigations for each appeared instance
are needed, the total cost for the investigation is (1/π12+1/π23)Cin, then, we can get
Lemma 2.
Proof of Lemma 3: For strategy 3,
(1) Under event A1, the number of instances appearing before the appearance of the

first signal s2 in state 1 is E1 and model 1 is being used during that time. The cost
for this time period is E1((1-p1)(1-T1)Cpn+p1F1Cnp). The number of instances ap-
pearing since the appearance of the first signal s2 until the time of the transition
from state 1 to state 2 is E3, and model 2 is being used during this time. The cost
for this time is E3((1-p1)(1-T2)Cpn+p1F2Cnp). The number of instances since the
system has shifted from state 1 to state 2 is 1/ π23, then, the cost for this time pe-
riod is ((1-p2)(1-T2)Cpn+p2F2Cnp)/π23.

(2) Under event A2, the number of instances appearing in state 1 since the start of the
process until the time of the transition from state 1 to state 2 is E2 with model1
being used during that time. The cost for this time period is E2((1-p1)(1-
T1)Cpn+p1F1Cnp). The number of instances appearing since the time of the transi-
tion from state 1 to state 2 until the appearance of the first signal s2 is E4,. The
cost for this time period is E4((1-p2)(1-T1)Cpn+p2F1Cnp). The number of instances
since the appearance of the first signal s2 is 1/π23-E4, then, the cost for this time
period is (1/ π23-E4)((1-p2)(1-T2)Cpn+p2F2Cnp)

To sum the above results of (1) and (2), and consider the probability of event A1
and A2, we get Lemma 3.
Proof of Lemma 4: For strategy 4, from the start of the process until transition from
state 1 to state 2, model 1 is used; Between transition from state 1 to state 2 and ap-
pearance of the first signal s2, model 1 is used. The number of instances in this time
period is E4.
(1) In state 2, after the first signal s2 appears, model 2 is used; the number of the in-

stances in this time period is 1/ π23-E4.
(2) In state 1, the number of investigations on signal s2 when event A3 and A4 occur

are P(A1)E5 and 0, in state 2, respectively. The number of investigations on signal
s2 when either event A3 or A4 occurs is 1.

Then, we can obtain Lemma 4


