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Abstract. Most feature selection approaches perform either exhaustive
or heuristic search for an optimal set of features. They typically only
consider the labelled training set to obtain the most suitable features.
When the distribution of instances in the labelled training set is differ-
ent from the unlabelled test set, this may result in large generalization
error. In this paper, a combination of heuristic measures and exhaustive
search based on both the labelled dataset and the unlabelled dataset is
proposed. The heuristic measures concerned are two contingency table
measures — Goodman-Kruskal measure and Fisher’s exact test —
which are used to rank the feature according to how well a feature pre-
dicts the class. Secondly, an exhaustive search is employed: by using
test for goodness-of-fit, information on both the labelled dataset and the
unlabelled dataset is applied to choose a better combination of features.
We evaluate the approaches on the KDD Cup 2001 dataset.

1. Introduction

Feature selection aims at finding a feature subset that can describe the data for a
learning task as good as or better than the original dataset. It is of importance for both
data mining and machine learning, in particular for high-dimensional data. Most algo-
rithms for feature selection perform either heuristic or exhaustive search [1]. Heuristic
feature selection algorithms estimate the feature’s quality with a heuristic measure,
for instance, information gain [2], Gini index [3], discrepancies measure [4] and chi-
square test [5]. Other examples of heuristic algorithms include the Relief algorithm
[6] and its extension, the PRESET algorithm [7]. Exhaustive feature selection algo-
rithms search all possible combinations of features and aim at finding a minimal com-
bination of features that is sufficient to construct a model consistent with a given set
of instances, for example, the FOCUS algorithm [8].

In supervised learning we use a labelled training set to obtain a model, which is
then executed on an unlabelled test set to obtain predictions. However, the model de-
veloped from the labelled dataset may not perform well on prediction for the unla-
belled dataset because of differences in class distribution and cost distribution be-
tween the labelled dataset and the unlabelled data. For classification, ROC analysis
[9] can be used to choose the best model from a model set if distribution of positives



and negatives and distribution of misclassification costs for the unlabelled dataset are
given. Whereas misclassification costs may be given, it is often impossible to obtain
the class distribution of positives and negatives for the unlabelled data. What can be
obtained from the unlabelled data is information about the distribution of instances.
For instance, the transduction technique [10] aims at maximizing the classification
margin on both the labelled and the unlabelled data.

Algorithms for both heuristic and exhaustive feature selection in the literature,
however, only focus on the labelled dataset. This may lead to large generalization er-
ror when the instance distribution in the labelled dataset is different from that of the
unlabelled data. This paper introduces two feature selection approaches: feature se-
lection based on the Goodman-Kruskal measure and feature selection based on both
labelled and unlabelled datasets. The Goodman-Kruskal measure is used to select a
subset of features, which is then exhaustively searched for a sub-subset with similar
distributions in both the labelled and the unlabelled datasets. Experimental evaluation
shows that the proposed approach performs well compared with other feature selec-
tion approaches.

The paper is organized as follows. Section 2 introduces two contingency table
measures — the Goodman-Kruskal measure and Fisher’s exact test — to rank the im-
portance of features. Section 3 proposes a new feature selection approach based on
the unlabelled dataset and the Chi-squared test for goodness-of-fit. Section 4 evalu-
ates the approach on the KDD Cup 2001 dataset [11]. Section 5 concludes with a dis-
cussion and the main conclusions.

2. Heuristic measures for feature selection

Heuristic feature selection algorithms search the feature set with a heuristic measure
such as information gain. Assume that the input features are independent of each
other, we can compare associations between each input feature and the class to select
important features. Let the value of the class be P (positive) or N (negative), and the
value of an input feature be C1…, Cr, then a contingency table can be built up as fol-
lows.

Class = P Class = N
Input Feature = C1 n1P (µ1P) n1N (µ1N) n1*

… … … …
Input Feature = Cr nrP (µrP) nrN (µrN) nr*

n*P n*N n

Table 1. An 2×r  contingency table
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j=P, N. The table has r–1 degrees of freedom.

2.1 Chi-squared measure

Most methods to measure the association between two features in a contingency table
are based on the Chi-squared test [5]. The Chi-squared measure can be used to meas-
ure the association between class and input feature. In the 2-by-r case in Table 1 it is
defined as

χ2 = (
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This value is compared with a threshold value corresponding to a confidence level.
For instance, if r=2 (1 degree of freedom) the χ2 value at the 5% level is 3.84 — if our
χ2 value is larger than that, the probability is less than 5% that discrepancies this large
are attributable to chance, and we are led to reject the null hypothesis of independ-
ence.

2.2 Fisher’s exact measure

If one uses the Chi-squared measure to test whether an association exists between two
random variables, µij>5 should be satisfied for each i and j. When µij ≤ 5 and r=2,
Fisher’s exact test can be applied to test the association. Assume that µ1P ≤ 5,

Pnn ∗∗ ≤1  and Nnn ∗∗ ≤1 . Below is Fisher’s exact measure [13]
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This measure is normalised between 0 and 1. When PF is less than 0.05, we are led to
reject the null hypothesis of independence (at the 5% level). It should be noted that
Fisher’s exact test can become computationally expensive for large n and r.

2.3 Goodman-Kruskal measure

The Chi-squared measure and Fisher’s exact test can only measure the association
between two features, as they are symmetric in the two features. Goodman and
Kruskal [14] introduced an asymmetric measure λ  that measures the predictivity of
one feature with respect to another, say, predicting class with an input feature. The
measure is
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where 10 ≤λ≤ . λ =0 means no predictive gain when using an input feature to pre-
dict the class, and λ =1 means perfect predictivity. If we want to select features that
have strong association with the class in a dataset, both Pn∗  and Nn∗  which are the

number of instances in which the class equals to P  and N , respectively, will be con-
stant. In this case, a simplified version of the Goodman-Kruskal measure is
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Section 4 in this paper will give examples that performance of models based on fea-
tures selected with Goodman-Kruskal measure is sometimes better than those based
on Chi-squared measure and information gain measure.

2.4 Information gain

For the sake of comparison, we use a feature selection approach based on information
gain. Information gain is commonly used as a surrogate for approximating a condi-
tional distribution in the classification setting [15]. Below is a simplified version of
information gain for our problem (the remaining part only depends on the class).
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3. Feature selection based on labelled and unlabelled data

Heuristic measures like the above can be used to rank features. However, such a
ranking does not consider that the probability distribution of the features in the la-
belled dataset may be different from those in the unlabelled dataset. In general, a
model developed from the labelled dataset may have large generalization error if the
probability distribution of the model’s features in the labelled dataset is considerably
different from their distribution in the unlabelled dataset. Assume M  features, say,

Mxxx ,,, 21 L , are selected with a certain criterion from N  features, where NM ≤ ,
and a model below is built up based on the M  features.

),,,( 21 Mxxxfy L= (6)

where y  represents the class. The probability distribution of Mxxx ,,, 21 L  in the la-
belled dataset is expected to be close to the one in the unlabelled data. In other words,



the closer the probability distributions of Mxxx ,,, 21 L between the labelled dataset
and the unlabelled data, the lower generalization error the model (6) has.

Let the probability distribution of Mxxx ,,, 21 L  in the labelled dataset be

),,,( 21 MxxxF L . According to the assumption of the heuristic search, Mxxx ,,, 21 L
are independent of each other.  Therefore, ),,,( 21 MxxxF L  can be simplified as

)()()(),,,( 221121 MMM xFxFxFxxxF LL = (7)

where )( ii xF  ),,2,1( Mi L=  is the probability distribution of ix  in the labelled data.

Similarly, let the probability distribution of Mxxx ,,, 21 L  in the unlabelled dataset be

),,,( 21 MxxxG L , we have

)()()(),,,( 221121 MMM xGxGxGxxxG LL = (8)

where )( ii xG  ),,2,1( Mi L=  is the probability distribution of ix  in the unlabelled

data.
If the distribution function ),,,( 21 MxxxF L  and ),,,( 21 MxxxG L  come from the

same distribution, the performance of the model on the labelled dataset and on the
unlabelled dataset will be similar. If the probability distributions )( ii xF  and )( ii xG
are similar, the distribution functions ),,,( 21 MxxxF L  and ),,,( 21 MxxxG L  will be
similar.

Assuming that ix  is a categorical feature, the Chi-squared test for goodness-of-

fit can be used to estimate whether two random variables come from the same distri-
bution. For the labelled data, let ijπ be the probability that the value of feature i  falls

in category ijC , Cj ,...,2,1= , which can be estimated as

ijπ = the number of instances with feature i falling in category Cij  in labelled data
the total number of instances in training dataset

(9)

Similarly for the unlabelled data, let ijθ  be the probability that the value of feature i

falls in category ijC , estimated as

ijθ =
dataset in working instances ofnumber   totalthe

data unlabelledin  category in  falling  feature with instances ofnumber  the ijCi (10)

The Chi-squared statistic for goodness-of-fit can be employed to measure the close-

ness between the distribution ijπ  and ijθ  for Cj ,...,1= :

∑
=

π

π−θ
=χ

C

j ij

ijij
i n

1

2
2 )( (11)



The smaller the value of 2
iχ  is, the more similar the distributions ijπ  and ijθ  are. We

average this over all features as follows:
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which measures the similarity between ),,,( 21 MxxxF L  and ),,,( 21 MxxxG L .
We can now formulate our proposed feature selection approach. We first use a heu-

ristic measure to select the ∗N  best features, then apply a exhaustive search based on
measure newχ  to select the combination of M features which minimizes the value of

newχ , where NNM << ∗ .

4. Experimental Evaluation

The thrombin dataset from KDD Cup 2001 consists of 139351 features and 1909 in-
stances and one class in the labelled data. All features and the class are binary. There
are 42 instances labelled ‘A’ (standing for ‘active’, the positive class) and 1867 in-
stances labelled ‘I’ (standing for ‘inactive’, the negative class). Below is the contin-
gency table.

Class Activity =A Class Activity =I
Input Feature = ’1’ An1 ( A1µ ) In1 ( I1µ ) ∗1n

Input Feature = ‘0’ An0 ( A0µ ) In0 ( I0µ ) ∗0n

42 1867 1909

Table 2. Contingency table.

A test dataset (below we call it the unlabelled data) with 634 unlabelled instances
is given. We will use this dataset to test the performance of models. ROC analysis is
used compare the performances of several classifiers within a ROC space. It allows,
through the construction of the convex hull of a set of points, identification of classi-
fiers that are optimal under certain parameter settings. Once the application context is
known, say, distribution of positives and negatives and misclassification costs, the
optimal classifiers can be determined from the convex hull. Only the classifiers on the
convex hull are optimal under some circumstances.

4.1 Heuristic feature selection

Chi-squared measure, Fisher’s exact measure, Goodman-Kruskal measure and infor-
mation gain measure discussed above are used to select the features.



If the measure 2χ  in equation (1) is used to select features, 120941 features can

be selected from the labelled dataset when a criterion 84.32 >χ  is applied.

When 2281 <∗n , A1µ  will be less than 5. Chi-squared test will not be suitable

for the case and Fisher’s exact measure FP  in section 2.2 can be used. In order to

simplify the calculation, Fisher’s exact test FP  in equation (2) is applied no matter

whether ∗1n  is greater than or less than 228. 102326 features whose FP  values are all
less than 0.05 can be selected.

By using Goodman-Kruskal measure in equation (4), we can select 51540 fea-
tures whose λ  are greater than zero.

If information gain measure in equation (5) is used to select the features, a set of
features with ascending order of measure can be obtained. The set only shows the im-
portance of each feature.

At the same time, the ID3 algorithm is used to build a decision based on the
whole labelled dataset, and eight features occur in the tree.

Because we only focus on the comparison of different measures instead of the
number of features to be selected, in order to compare and simplify our calculation,
analogous to the number of features selected by the ID3 decision tree, eight features
selected with other measures are chosen to develop models.

As it turns out, the first eight features selected with Fisher’s exact measure are the
same as those selected with the information gain measure. The order of features se-
lected with Fisher’s exact measure and information gain measure is very similar. Un-
fortunately, it is hard to prove that measure of FP  in equation (2) and the measure of

gainI  in equation (5) can lead a similar result. Because the features selected by infor-

mation gain and those by Fisher’s exact measure are the same, we only compare the
information gain measure with other measures below.

Based on the labelled data, logistic regression model, Naive Bayes model, IB1
model, support vector machine---sequential minimal optimisation (SMO) algorithm,
Kstar model and ID3 decision tree are built. Descriptions of those approaches can be
found in [12]. The Weka toolkit is used to build the models. We use ten-fold cross
validation to estimate the error of a model on the labelled data. In order to explain the
evaluation metrics used, let the confusion matrix be

Positive examples Negative examples
Instances predicted positive a b
Instances predicted negative c d

Table 3. A confusion matrix

Then the metrics are as follows:

Accuracy=
dcba

da
+++

+
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Recall Average= )(
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True Positive Rate=
a

a+ c
, and False Positive Rate=

c
b + d

.

A model is expected to possess high accuracy, high recall average, high TPrate and
low FPrate.

In Table 4, for instance, 0.833(0.991) in the second row and the second column
means, recall average=0.991 and accuracy=0.833 for the logistic model on the la-
belled dataset (lbl).  0.484(0.416) in the third row and the second column means, re-
call average=0.484 and accuracy=0.416 for the logistic model on the unlabelled da-
taset (ulbl), and so on. ID3 in the first row means the feature set selected by the ID3
decision tree, Info Gain means information gain measure, Chi-squared means Chi-
squared measure and Goodman means Goodman-Kruskal measure.

The underlined numbers indicate the maximum value in the same row in table 4.
From the table, both accuracy and recall average are maximum for Naive Bayes
model and support vector machine and accuracy for Prism model and ID3 decision
tree are maximum for the unlabelled dataset when Goodman-Kruskal measure is used,
and no performance for other measures is better than Goodman-Kruskal measure.

Model ID3 Info Gain Chi Squared Goodman
Logistic (lbl) 0.833(0.991) 0.736(0.984) 0.749(0.986) 0.772(0.985)
Logistic (ulbl) 0.484(0.416) 0.509(0.626) 0.564(0.598) 0.546(0.597)
NaiveBayes (lbl) 0.838(0.979) 0.839(0.982) 0.820(0.988) 0.900(0.988)
NaiveBayes (ulbl) 0.480(0.402) 0.552(0.379) 0.538(0.435) 0.543(0.544)
SMO (lbl) 0.806(0.984) 0.806(0.984) 0.808(0.988) 0.819(0.987)
SMO (ulbl) 0.485(0.319) 0.500(0.457) 0.525(0.509) 0.564(0.615)
Prism (lbl) 0.812(0.989) 0.682(0.983) 0.756(0.987) 0.707(0.985)
Prism (ulbl) 0.501(0.497) 0.492(0.655) 0.577(0.587) 0.607(0.576)
ID3 (lbl) 0.867(0.990) 0.748(0.985) 0.808(0.988) 0.748(0.985)
ID3 (ulbl) 0.495(0.475) 0.542(0.642) 0.609(0.697) 0.618(0.651)
IB1 (lbl) 0.808(0.988) 0.795(0.986) 0.761(0.987) 0.748(0.985)
IB1 (ulbl) 0.548(0.555) 0.551(0.662) 0.541(0.584) 0.533(0.596)
Kstar (lbl) 0.702(0.986) 0.724(0.985) 0.774(0.990) 0.737(0.988)
Kstar (ulbl) 0.449(0.569) 0.534(0.632) 0.560(0.623) 0.544(0.645)

Table 4. Results based on different measures

Figure 1 is a ROC curve based on models for the unlabelled dataset. The X-axis and
the Y-axis in the ROC curve represent FPrate and TPrate, respectively. The ROC
curve shows that Naïve Bayes model based on features selected with information gain
measure, both Prism model and ID3 decision tree based on features selected with
Goodman-Kruskal measure and ID3 decision tree based on features selected with Chi-
squared measure are on the convex hull. In other words, those models are the optimal
models in certain circumstances.



Fig. 1. ROC curve---comparison of different measures

4.2 Feature selection based on labelled and unlabelled data

By using Goodman-Kruskal measure, all features in the labelled dataset can be ranked
in a descending order. The first twenty and thirty features from the ranked feature set
are selected to form two feature sets, respectively. Then an exhaustive search for this
two sets is performed to find the best combination of eight features to minimize newχ
in equation (12). Let F20 and F30 be the exhaustive search on the twenty-feature set
and on the thirty-feature set, respectively. Table 5 shows the performances of models
based on features selected with different measures.

The underlined numbers indicate the maximum values in the same row for the un-
labelled dataset in table 5. From the table, only Naïve Bayes model based on features
selected with information gain measure and ID3 decision tree based on features with
Goodman-Kruskal measure have higher accuracy than F20 search or F30 search. Lo-
gistic model based on features selected with information gain measure, support vector
machine model based on features selected with Goodman-Kruskal measure and ID3
decision tree model based on features selected with Chi-squared measure have higher
recall average than F20 search or F30 search.

Figure 2 is a ROC curve based on prediction of models for the unlabelled dataset.
The ROC curve shows that Naïve Bayes model based on features selected with infor-
mation gain measure, Prism model on features selected with F20 are on the convex
hull, IB1 on features selected with F20, Prism model on features selected with F30
and Kstar-kstar model on features selected with F30 are close to convex hull, which
mean that F20 and F30 are better than other feature selection approaches.
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Model ID3 Info Gain Chi Squared Goodman F20 F30
Logistic (lbl) 0.833(0.991) 0.736(0.984) 0.749(0.986) 0.772(0.985) 0.772(0.985) 0.784(0.987)
Logistic (ulbl) 0.484(0.416) 0.509(0.626) 0.564(0.598) 0.546(0.597) 0.559(0.623) 0.588(0.691)
NaiveBayes (lbl) 0.838(0.979) 0.839(0.982) 0.820(0.988) 0.900(0.988) 0.785(0.990) 0.820(0.990)
NaiveBayes (ulbl) 0.480(0.402) 0.552(0.379) 0.538(0.435) 0.543(0.544) 0.514(0.569) 0.579(0.691)
SMO (lbl) 0.806(0.984) 0.806(0.984) 0.808(0.988) 0.819(0.987) 0.761(0.986) 0.761(0.987)
SMO (ulbl) 0.485(0.319) 0.500(0.457) 0.525(0.509) 0.564(0.615) 0.604(0.577) 0.576(0.696)
Prism (lbl) 0.812(0.989) 0.682(0.983) 0.756(0.987) 0.707(0.985) 0.723(0.987) 0.774(0.989)
Prism (ulbl) 0.501(0.497) 0.492(0.655) 0.577(0.587) 0.607(0.576) 0.688(0.735) 0.614(0.722)
ID3 (lbl) 0.867(0.990) 0.748(0.985) 0.808(0.988) 0.748(0.985) 0.738(0.988) 0.773(0.988)
ID3 (ulbl) 0.495(0.475) 0.542(0.642) 0.609(0.697) 0.618(0.651) 0.644(0.667) 0.610(0.721)
IB1 (lbl) 0.808(0.988) 0.795(0.986) 0.761(0.987) 0.748(0.985) 0.785(0.988) 0.773(0.988)
IB1 (ulbl) 0.548(0.555) 0.551(0.662) 0.541(0.584) 0.533(0.596) 0.677(0.744) 0.569(0.689)
Kstar (lbl) 0.702(0.986) 0.724(0.985) 0.774(0.990) 0.737(0.988) 0.726(0.988) 0.691(0.986)
Kstar (ulbl) 0.449(0.569) 0.534(0.632) 0.560(0.623) 0.544(0.645) 0.571(0.716) 0.561(0.751)

Table 5. Comparisons of different approaches.

Fig. 2. ROC curve comparing different measures based on labelled and unlabelled
data.

5. Concluding remarks

In the above experiments in section 4, we first selected candidate feature set (say,
twenty and thirty features in this paper) from features selected with Goodman-Kruskal
measure, then use newχ  in equation (13) to search a best combination of eight features
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among the candidate feature set. However, if the candidate feature set is too large,
some features with small Goodman-Kruskal measure may be included. Therefore, if
more features are searched with newχ , a smaller newχ  may probably be achieved, but

prediction association between features and the class will degrade which means the
performance of models based on features selected with newχ  will become poor. If few

features are searched with newχ , a larger newχ  is probably obtained. That means that
the distribution of the labelled dataset and that of the unlabelled dataset may have a
big difference, which will lead to larger generalization error. In other words, there is a
trade-off between the size of search space and the value of newχ .

Contingency table measures have been discussed by statisticians for a long time.
The most well-known technique for analyzing the contingency table is the Chi-
squared test. Furthermore, Fisher’s exact test is used to test on contingency table with
small expectations and Goodman-Kruskal measure is used to measure the prediction
association. This paper firstly borrowed Fisher’s exact test, Goodman-Kruskal meas-
ure to select feature. Below we summarize the results given in this paper

A. The rank order with Fisher’s exact measure is similar to the one with infor-
mation gain measure.

B. The performance of feature selection based on the Goodman-Kruskal meas-
ure is better than those based on other measures.

C. Feature selection with a measure based on the features from the labelled da-
taset and the unlabelled dataset has a lower generalization error than those
based only on the labelled dataset.
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