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Abstract. Appropriate selection of learning algorithms is essential for the suc-
cess of data mining. Meta-learning is one approach to achieve this objective by 
identifying a mapping from data characteristics to algorithm performance. Ap-
propriate data characterization is, thus, of vital importance for the meta-learning. 
To this effect, a variety of data characterization techniques, based on three 
strategies including simple measure, statistical measure and information theory 
based measure, have been developed, however, the quality of them is still 
needed to be improved. This paper presents new measures to characterise data-
sets for meta-learning based on the idea to capture the characteristics from the 
structural shape and size of the decision tree induced from the dataset. Their ef-
fectiveness is illustrated by comparing to the results obtained by the classical 
data characteristics techniques, including DCT that is the most wide used tech-
nique in meta-learning and Landmarking that is the most recently developed 
method and produced better performance comparing to DCT.  

1 Introduction 

Extensive research has been performed to develop appropriate machine learning tech-
niques for different data mining problems, and has led to a proliferation of different 
learning algorithms. However, previous work has shown that no learner is generally 
better than another learner. If a learner performs better than another learner on some 
learning situations, then the first learner must perform worse than the second learner 
on other situations [18]. In other words, no single learning algorithm can perform well 
and uniformly outperform other algorithms over all data mining tasks . This has been 
confirmed by the ‘no free lunch theorems’ [31,32]. The major reasons are that a learn-
ing algorithm has different performance in processing different dataset and different 
learning algorithms are implemented with different search heuristics, which results in 
variety of ‘inductive bias’ [15]. In real-world applications, the users need to select an 
appropriate learning algorithm according to the mining task that they are going to 



perform [17,18,1,7,20,12]. An inappropriate selection of algorithm will result in slow 
convergence, or even produce a sub-optimal solution due to a local minimum.  

Meta-learning has been proposed to deal with the issues of algorithm selection [5, 
8]. One of the aims of meta-learning is assisting the user to determine the most suitable 
learning algorithm(s) for the problem at hand. The task of meta-learning is to find func-
tions that map datasets to predicted data mining performance (e.g., predictive accura-
cies, execution time, etc.). To this end meta-learning uses a set of attributes, called 
meta-attributes, to represent the characteristics of data mining tasks, and search for 
the correlations between these attributes and the performance of learning algorithms in 
general or the optimal learning algorithm in particular [5,10,12]. Instead of executing all 
learning algorithms to obtain the optimal one, meta-learning is performed on the meta-
data characterising the data mining tasks. Algorithm selection is performed by execut-
ing the meta-model induced on the characteristics of the dataset.  

Three basic procedures are involved in meta-learning: 1) describing the characteris-
tics of learning tasks using a set of meta-attributes; 2) developing the correlations 
between the meta-attributes and the performance of learning algorithms or the optimal 
learning algorithms, which is called meta-knowledge; 3) to search, given a new learning 
task, the optimal learning algorithm(s) according the developed meta-knowledge. It is 
obvious that the effectiveness of meta-learning is largely dependent on the descrip-
tion of tasks (i.e., meta-attributes). Several techniques have been developed, such as 
data characterisation techniques (DCT) [13] to describe the problem to be analyzed, 
including simple measures (e.g. number of attributes, classes et al.), statistical meas-
ures (e.g. mean and variance of numerical attributes), and information theory-based 
measures (e.g. entropy of classes and attributes). There is, however, still a need for 
improving the effectiveness of meta-learning by developing more predictive meta-
attributes and selecting the most informative ones [9]. 

In [3], the authors suggested to characterize dataset by measuring the characteristic 
of models induced on the dataset. Inspired by this idea, this paper presents new meth-
ods to measure the complexity of classification data mining tasks. The complexity of 
data mining tasks is related to the characteristics of datasets and the inductive bias of 
learning algorithms. The basic idea is to investigate the possibility of capturing data-
set characteristics by measuring the properties of a decision tree induced from the 
dataset, i.e., to measure the structural shape and size of the tree generated by standard 
methods (c5.0 [22] is used in this paper). More specifically, these measures capture the 
structural properties of decision tree by some simple measures counting the number of 
nodes, leaves and attributes in the tree. The extracted meta-attributes have been ap-
plied in ranking-based meta-learning for classification algorithm selection. The experi-
mental results clearly show the enhancement of ranking performance compared to the 
DCT techniques, which is the most commonly used technique, and landmarking, a 
recently introduced technique [19,2].  

This paper is organized as following. In section 2, some related work is introduced, 
including meta-learning methods for algorithm selection and data characterisation 
techniques. The proposed method for characterising the datasets is stated in detail in 
section 3. Experiments illustrating the effectiveness of the proposed method are de-



scribed in section 4. Section 5 concludes the paper, and points out interesting possi-
bilities for future work. 

2 Related Work 

Two basic factors are involved in meta-learning: the description of the learning tasks 
(datasets), and the correlation between the task description and the optimal learning 
algorithm. The first aspect is associated to techniques to characterise datasets with 
meta-attributes, whilst the second is the learning at meta-level, which develops the 
meta-knowledge for selecting appropriate algorithm in classification. 

2.1 Work Related to Meta-Learning for Algorithm Selection 

For algorithm selection, several meta-learning strategies have been proposed 
[6,25,26]. In general, there are three options in generating the output of the meta-
learner. One is to select a single learning algorithm, i.e. to select the algorithm that is 
expected to produce the best model for the dataset. The second is to select a sub-
group of learning algorithms, including not only the best algorithm but also the algo-
rithms that are not significant worse that the best one. The third possibility is to rank 
the learning algorithms according to their performance. The ranking will assist the user 
to finally select the learning algorithm. This ranking-based meta-learning is the main 
approach in the Esprit Project MetaL (www.metal-kdd.org).  

Ranking the preference order of algorithms is performed based on estimating the 
performance of algorithms. In data mining, performance can be measured not only in 
term of accuracy but also time or understandability of model generated. In this paper, 
we assess performance with the Adjusted Ratio of Ratios (ARR) measure, which com-
bines the accuracy and time. ARR gives a measure of the advantage of a learning algo-
rithm over another algorithm in terms of their accuracy and the execution time for a 
specific dataset. The user can adjust the importance of accuracy relative to time by a 
tunable parameter. The ‘zoomed ranking’ method proposed by Soares [26] based on 
ARR, which will be described briefly in section 4.1, is used in this paper for algorithm 
selection, taking into account of accuracy and execution time simultaneously. 

2.2 Work Related to Dataset Characterization 

As different learner exhibit sensitivity to specific characteristics of the dataset, the 
task of meta-learning is to model how these characteristics affect the relative perform-
ance of different learning algorithms, and then predict the preference for each learning 
algorithms before performing data mining process. The methods used to describe the 
characteristics of the dataset were called Data Characterization Tool (DCT) [13]. 

The first attempt to characterise datasets in order to predict the performance of 
classification algorithm was done by Rendell et al. [23]. So far, two main strategies 



have been developed in order to characterise a dataset for algorithm selection. First 
one describes the properties of datasets using statistical and informational measures. 
In the second one a dataset is characterised using the performance (e.g. accuracy) of a 
set of simple learners, called landmarker [19,2]. 

The description of a dataset in terms of its information/statistical properties, ap-
peared for the first time within the framework of the STATLOG project [14]. The au-
thors used a set of 15 characteristics, spanning from simple ones, like the number of 
attributes or the number of examples, to more complex ones, such as the first canonical 
correlation between the attributes and the class. This set of characteristics was later 
applied in various studies, aimed at solving the problem of algorithm selection [5,29,27]. 
They distinguish three categories of dataset characteristics, namely simple, statistical 
and information theory based measures. Statistical characteristics are mainly appropri-
ate for continuous attributes, while information theory based measures are more ap-
propriate for discrete attributes. Linder and Studer [13] provide an extensive list of 
information and statistical measures of a dataset computed for each attribute or pairs 
of attributes. They provide a tool for the automatic computation of these characteris-
tics, which was called Data characterisation Tools (DCT). However, they pointed out 
that only a limited set of these measures is relevant in providing recommendation, 
which in fact was very similar to the one defined in STATLOG. Sohn [27], also uses 
the STATLOG set as a starting point, and she proceeds with careful evaluation of their 
properties in a statistical framework. She discovers that some of the characteristics are 
highly correlated, and she omits the redundant ones from her study. Furthermore, she 
introduces new features that are transformation or combinations of the existing ones, 
like ratios or seconds powers, with the goal of providing successful predictions. 

An alternative approach to characterise datasets called landmarking was proposed 
in [19,2]. The intuitive idea behind landmarking is that the performance of simple 
learner, landmarker, can be used to predict the performance of given candidate algo-
rithms. That is, given landmarker A and B, if we know landmarker A outperforms land-
marker B on the present task, then we could select the learning algorithms that has the 
same inductive bias of landmarker A to perform this data mining task. It has to be en-
sured that the chosen landmarkers have quite distinct learning biases. As a closely 
related approach, Bensusan [3, 33] had also used the information computed from the 
induced decision trees to characterise tasks in meta-learning, such as the ratio of the 
number of nodes to the number of the attributes, the ratio of number of nodes to the 
number of training instances. He listed 10 measures based on the unpruned tree, but 
the performance of these measures in algorithm selection was not evaluated.  

3 The proposed measures for describing data characteristics 

The task of characterizing dataset for meta-learning is to capture the information about 
learning complexity for the dataset. This information should enable the estimation of 
performance of the given learning algorithms. It should also be computable within a 
relative short time comparing to the whole learning process, which is desired to be 



predictive in estimating the performance of the given learning algorithms. In this sec-
tion we introduce new measures to measure the characteristics of the dataset based on 
measuring a variety of properties of a decision tree induced from that dataset. 

The major idea here is to measure the complexity of learning by measuring the struc-
ture and size of decision tree, and use these measures to predict the model complexity 
generated by other learning algorithms. We employed the standard decision tree 
learner, c5.0tree. There are several reasons for selecting decision trees. The major rea-
son is that decision tree has been one of the most popularly used machine learning 
algorithms in classification, and the induction of decision tree is deterministic, i.e. the 
same training set always produces the similar structure of decision tree.  

 

Definition. A standard tree induced with c5.0 (or possibly ID3 or c4.5) consists of a 
number of branches, one root, a number of nodes and a number of leaves. One branch 
is a chain of nodes from root to a leaf; and each node involves one attribute. The oc-
currence of an attribute is the number of times the attribute occurs in the tree, which 
provides the information about the importance of the associated attribute. The tree 
width is defined as the number of lengthways partitions divided by parallel nodes or 
leave from the leftmost to the rightmost nodes or leave. The tree level is defined as the 
breadth-wise partition of tree at each success branches, and the tree height is defined 
by the number of tree levels, as shown in Fig.1. The length of a branch is defined as 
the number of nodes in the branch minus one. 

 

We propose, based on above notations, to describe decision tree in term of the fol-
lowing three aspects: a) outer-profile of tree; b) statistic for intra-structure: including 
tree levels and branches; c) statistic for tree elements: including nodes and attributes.  

To describe the outer-profile of the tree, the width of tree (treewidth) and the height 
of the tree (treeheight) are measured according to the number of nodes in each level 
and the number of levels, as illustrated in Fig.1. Also, the number of nodes (NoNode) 
and the number of leaves (NoLeave) are used to describe the overall property of a tree. 
In order to describe the intra-structure of the tree, the number of nodes at each level 
and the length of each branch are counted. Let us represent them with two vectors 
denoted as NoinL=[v1,v2,…vl] and LofB=[L1,L2,….Lb] respectively, where vi is the 
number of nodes at the ith level, Lj is the length of jth branch, l and b is the number of 
levels (treeheight) and number of branches. Based on NoinL and LofB, four measures 
are generated. The maximum and minimum number of nodes at one level:  

maxLevel = max(v1,v2,...v l)
minLevel = min(v1,v2, ...v l )

 (1) 

(As the minLevel is always equal to 1, it is not used.) The mean and standard deviation 
of the number of nodes and leaves on levels: 
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The length of longest and shortest branches: 



LongestBranch = max(L1,L2, ...Lb )
ShortestBranch = min(L1,L2, ...Lb )

 
(3) 

The mean and standard deviation of the length of each branch: 
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Besides the distribution of nodes, the frequency of attributes used in a tree pro-
vides further information regarding the dataset. For that, we calculate the times each 
attribute is used in a tree, which is represented by a vector NoAtt=[nAtt1, nAtt2, …. 
nAttm], where nAttk is the number of times the kth attribute is used and m is the total 
number of attributes in the tree. Again, the following measures are used: 

The maximum and minimum occurrence of attributes: 

maxAtt = max( nAtt1,nAtt2,...nAttmm)

minAtt = min(nAtt1,nAtt2 ,...nAttmm)
 (5) 

Mean and standard deviation of the number of occurrences of attributes: 
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As a result, a total of 15 meta-attributes is used in our experiments. 
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Fig. 1. Structure of Decision Tree. 

4 Experimental Evaluation 

In this section we experimentally evaluate the proposed data characteristics. In section 
4.1 we describe our experimental set-up, in section 4.2 we compare our proposed meta-
features with DCT and landmarking, and in section 4.3 we study the effect of meta-
feature selection, and compare the performance of DCT and our methods for selected 
number of meta-features. 



4.1 Experimental set-up 

The technique of meta-learning employed in this paper is called ranking with zooming 
[26], which includes two phases: 1) training phase to collect the meta-data; 2) reason-
ing phase to rank the candidate learning algorithms for a given data mining task. 

In the training phase, all the benchmark datasets are characterised using the data 
characterisation methods (e.g., DCT, landmarking or the method proposed in this pa-
per). As a result, one dataset is described with a vector of a set of meta-attributes. 
These meta-attributes together with the analyzed performance (including accuracy and 
time) constitute the meta-data. In the reasoning phase, two steps are involved: 1) 
given a data mining problem (a dataset to analyze), the k-Nearest Neighbor (kNN) 
algorithm is used to select a subset with k  dataset from the benchmark datasets, 
whose characteristics are similar to the characteristics of the present dataset according 
to some distance function; this step is called zooming [26]; 2) ranking the order of 
preference of candidate learning algorithms according to their performance on these 
datasets selected in zooming phase; this step is named ranking. The ranking is per-
formed based on the adjusted ratio of ratios (ARR), a multi-criteria evaluation measure 
that combine the predicated accuracy and time. ARR has a parameter to enable the 
user to adjust the relative imp ortance of accuracy and time according to fulfill his par-
ticular data mining objective. More details can be found in [26].  

To evaluate a recommended ranking, we calculate its correlation to an ideal ranking 
obtained for the same dataset. The ideal ranking is obtained by estimating the per-
formance of the candidate learning algorithms using 10-fold cross-validation. The 
similarity between the generated ranking and the ideal ranks is measured using the 
Spearman’s rank correlation coefficient [30]. 

rs =1−
6D2

n(n2 −1)
,D2 = Di

2

i=1

n∑ = (ri − ri )2

i=1

n∑  (7) 

where the ir and ir  are the predicted ranking and actual ranking for algorithm i re-

spectively. The bigger 
sr  is, better of ranking result is, with 1=sr  if the ranking is same 

as the ideal ranking. 

4.2 Comparison with DCT and Landmarking 

In our experiments, a total of 10 learning algorithms, including c5.0tree, c5.0boost and 
c5.0rules [21], Linear Tree (ltree), linear discriminant (lindiscr), MLC++ Naive Bayes 
classifier (mlcnb) and Instance-based leaner (mlcib1) [11], Clementine Multilayer Per-
ceptron (clemMLP), Clementine Radial Basis Function (clemRBFN) and rule learner 
(ripper), have been evaluated on 47 datasets, which are mainly from the UCI reposi-
tory [4]. The error rate and time were estimated using 10-fold cross-validation. Our aim 
in this paper is to evaluate the effect of new proposed meta-attributes (called DecT 
from now on) on ranking of these 10 learning algorithms. In other words, we are inter-
ested in comparing the rankings generated by DecT (15 meta-attributes) to the ranking 
generated by DCT (25 meta-attributes) and Landmarking (5 meta-attributes). 



The first experiment is performed to rank the given 10 learning algorithms on the 47 
datasets. The leave-one-out method is used to evaluate the performance of ranking, 
i.e., the performance for ranking the 10 given learning algorithms for each dataset on 
the basis of the other 46 datasets. In the first experiment, the parameters k=10, Kt=100, 
meaning that we are willing to tread 1% in accuracy for a 10 times speed-up or slow-
down. The ranking performance is measured with sr  (Eq. (15)). The results of ranking 

performance of using DCT, landmarking and DecT are shown in Fig. 2. The overall 
average performance for DCT, Landmarking and DecT are 0.613875, 0.634945 and 
0.676028 respectively, which demonstrates the improvement of using DecT in ranking 
algorithms, comparing to DCT and Landmarking. 
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Fig. 2. Ranking performance for 47 datasets using DCT, landmarking and DecT. 

 

In order to look in more detail at the improvement of DecT over DCT and Landmark-
ing, we performed the experiment of ranking using different values of k and Kt. As 
stated in [26], the parameter Kt represents the relative importance of accuracy and 
execution time in selecting the learning algorithm (i.e., higher Kt means the accuracy is 
more important and time is less important). Fig.3 shows the ranking performances of 
DCT, landmarking and DecT along with different values of Kt={10, 100, 1000}, from 
which it is observed that, for all the used Kt, DecT improves the performance with 
different increased degree, comparing to DCT and landmarking.  
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Fig. 3. The ranking performance for different values of Kt. 

 

Fig. 4 shows the performance of ranking based on different zooming degree (differ-
ent k), i.e., selecting different number of similar datasets, based on which the ranking is 
performed. From these results, we observe that 1) for all different values of k, DecT 



produces better ranking performance than DCT and landmarking; 2) best performance 
is obtained by selecting 10-25 datasets among 46 datasets. 
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Fig. 4.  The ranking performance for different values of k. 

4.3 Performing meta-feature selection 

The k-nearest neighbor learning method, employed to select k datasets for ranking the 
performance of learning algorithms for the given dataset, is known to be sensitive to 
the irrelevant and redundant features. Using smaller number of features could help to 
improve the performances of k-nearest neighbor learning, as well as to reducing the 
time used in meta-learning. In our experiments, we manually reduced the number of 
DCT meta-features from 25 to 15 and 8, and compare their results to those obtained 
based on the same number of DecT meta-features. The reduction for DCT meta-
features is performed by removing the features thought to be redundant, and the fea-
tures having a lot of non-appl values, and the reduction for DecT meta-features are 
performed by remo ving redundant features. 
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Fig.5. Results for reduced meta-features. 

The ranking performances for these reduced meta-features are shown in Fig.5, in 
which DCT(8), DCT(15), DecT(8) represent the reduced 8, 15 DCT meta-features and 8 



DecT meta-features, DCT(25) and DecT(15) represent the full DCT and DecT meta-
features respectively. From Fig.5, we can observe that feature selection did not signifi-
cantly influence the performance of either DCT or DecT, and that the latter outper-
forms the former across the board. 

5 Conclusions and Future Work 

Meta-learning strategy, under the framework of MetaL, aims at assisting the user in 
selecting appropriate learning algorithm for the particular data mining task. Describing 
the characteristics of dataset in order for estimating the performance of learning algo-
rithm is the key to develop a successful meta-learning system. 

In this paper, we proposed new measures to characterise the dataset. The basic idea 
of is to process the dataset using a standard tree induction algorithm, and then to 
capture the information regarding the dataset’s characteristics from the induced deci-
sion tree. The decision tree is generated using standard c5.tree algorithm. A total of 15 
measures, which constitute the meta-attributes for meta-learning, have been proposed 
for describing different kind of properties of a decision tree.  

The proposed measures have been applied in ranking the learning algorithms based 
on accuracy and time. Extensive experimental results have illustrated the improvement 
of ranking performance by using the 15 meta-attributes generated by the proposed 
method, compared to the 25 DCT and 5 Landmarking meta-features. In order to reduce 
the effect of redundant or irrelevant features on the performance of zooming ranking, 
we also compared the performance based on selected 15 DCT meta-features and DecT, 
and selected 8 DCT and DecT meta-features. The results  suggest that feature selection 
does not significantly change the performance of either DCT or DecT.  

In other experiments, we observed that the combination of DCT with DecT or 
Landmarking with DCT and DecT did not produce better performance than DecT. This 
is an issue that we are interested in further investigation. The major reason may come 
from the use of k-nearest neighbor learning in zooming based ranking strategy. One 
possibility is to test the performance of the combination of DCT, landmarking and 
DecT in other meta-learning strategies, such as best algorithm selection. Another 
interesting subject is to look at the change of shape and size of the decision tree along 
with the change of examples used in tree induction, as it will be useful if it is possible 
to capture the data characteristics based on sampled dataset. This is especially impor-
tant for large datasets.  
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