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Abstract. This contribution presents a parametric variant of committee-
-based selective sampling. The committee members learned on small sub-
sets obtained by random sampling from the original dataset are used to
classify the rest of the dataset. Those examples on which the committee
came to consensus are considered to be easy, the others to be hard. The
main idea is to select the resulting training subset with a different ratio
of easy to hard examples. In the second part of the paper meta-learning
technique for parameter setting is introduced and experimental results
obtained with it are discussed. This selective sampling method has been
proven useful in reducing the learning time while keeping the accuracy
at a better level than random selection does. The meta-learning method
for parameter settings displays fairly low ranking error and is sufficient
for a reliable and immediate prediction of parameters.

1 Introduction

Instance selection methods are aimed at finding a representative subset of train-
ing data which would be smaller than the original dataset, but still would provide
enough information to achieve an accurate model. Three main motivations can
be found for reducing the number of training examples. The first reason could
be that a sufficient amount of labeled examples is difficult to obtain; a problem
frequently faced in natural language processing. If we cannot rely on unsuper-
vised learning and examples should be annotated manually by a human, then
we need to save the annotation costs [1, 2].

The second, quite an opposite situation arises when we have a cheap access
to a large, or even potentially unlimited amount of training data. It happens
when our data mining task can be solved with an unsupervised or implicitly
supervised approach [3]. But still, we need to select a finite training subset of
reasonable size since we are always limited in learning time.

And the third convenience for a selection of training examples comes up
when the learning on a whole dataset leads to a huge model. This can be caused
either by presence of noisy examples or outliers in the training data [4], or by
an inherent property of the given learning algorithm. Instance-based learning
algorithms are clearly the case, but also for several other algorithms (including
tree construction ones such as C4.5, and rule construction ones such as C4.5rules)
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it has been observed [5] that increasing the amount of data used to build a
model often results in a linear increase in model size, although that additional
complexity results in no significant increase in model accuracy. Therefore, a
selection of training data could help us to make the model more compact and
concise.

This work was motivated by the fact that for large datasets which are being
treated in data mining the experiments took too much time. Therefore, our pri-
mary goal was to decrease the learning time (and perhaps the model size) while
keeping the error rate as low as possible; a goal perfectly addressed by selective
sampling. Selective sampling proceeds, in general, by measuring the informa-
tion content of each training example. The objective is to select those examples
which could provide the most informative description of a target concept being
learned. The measure of information content can be either uncertainty-based [6]
or committee-based [7]. Approaches based on uncertainty often derive an explicit
measure of the expected information gained by using the example. However, the
main drawback of these approaches is that they are usually dependent on a
particular learning algorithm. Since we have been concerned with a simple selec-
tive sampling technique which could be easily applied to many different learning
algorithms, we gave precedence to the committee-based approach.

The structure of this paper is as follows. In Section 2 we first explain the
main idea of our variant of selective sampling and then describe the algorithm.
Discussion on speed up of this way of sampling follows. Section 3 brings exper-
imental verification of usefulness of this selective sampling method. The second
part of this paper concerns settings of parameters of the method. In Section 4 we
describe the meta—learning method used. Section 5 displays the results obtained
by meta-learning.

2 Committee-Based Selective Sampling

2.1 General scheme

The general scheme of our variant of selective sampling driven by committee of
classifiers is as follows. In the beginning, we learn a set of several fast classifiers
— members of the committee. Then, we let the committee make a decision about
each given training example, which means that each member has to classify the
example according to its own knowledge about the target concept. Thus, we
get several (possibly different) class predictions for each example. Hence, the
information content of the example is evaluated as a measure of disagreement
among the committee members. For final training we select a subset of examples
with highest information content.

If we want to devise a particular variant of committee-based selective sam-
pling, several questions should be answered:

1. How many committee members do we need?
2. How to choose the committee members?
3. How to measure the disagreement among committee members?
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4. How to select the resulting subset of training examples?

Our parametric variant of committee-based selective sampling adopts the fol-
lowing solution. It presumes that we have a fast (low complexity) learning algo-
rithm Aj;y,;; which we use for training initial classifiers (committee members) and
a slow (but robust) learning algorithm Agpq which we use for training the final
classifier. Both training and prediction times of the initial classifiers are impor-
tant, due to the fact that predictions on the whole dataset have to be obtained.!
Our method treats the number of committee members as a fixed parameter N.
The committee members are established by learning on small subsets obtained
by random sampling from the original dataset. The size of these small subsets
is given by another parameter I. Our measure of disagreement is rather rough,
since we distinguish only two categories: a complete consensus and a dissension.
Those examples on which the committee came to a consensus are considered
to be easy, while the others are considered to be hard. The main idea of our
method is to select the resulting training subset in such a way that the ratio of
easy to hard examples in the resulting subset is computed as a function of the
corresponding ratio which was observed in the initial dataset. As this function
we simply took a multiplication by a coefficient X. The values 0 < X < 1 mean
that we want to decrease the ratio of easy examples in the final subset (actually,
X = 0 implies no easy examples there). On the other hand, the values X > 1
mean that we intend to add even more easy examples to the final subset. Note
that the value X =1 results in no change of the easy/hard ratio, therefore this
setting corresponds to random sampling. Another parameter F' determines the
size of the final training subset.

2.2 Algorithm

We can already see that our selective sampling technique is parameterised by
four numerical values:

N — a number of initial classifiers (members of the committee)

I — a size of the initial training subset used for learning initial classifiers
F' — a size of the final training subset used for learning a final classifier

X — a coefficient for modifying the original ratio of easy to hard examples

More formally, our example selection works as follows:

1. The number of committee members is given by a parameter N, N > 2.

2. From the given training set we draw randomly an initial subset of the relative
size I, 0 < I <1, as a fraction of the original dataset. The initial subset is
randomly split into N blocks and each block is used for training one initial
classifier with a learning algorithm A;y;;-

! However, this need not be the case. In Section 2.3 we describe an improvement of
our basic method which estimates the size of a subset sufficient for submitting to
the committee.
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3. Each initial classifier is applied to the whole training set. Therefore, we obtain
N class predictions for each example. Those examples which were classified
consistently (it means that all N predictions were identical) are considered
as easy ones while the others are considered as hard ones. Let’s denote the
ratio of easy to hard examples as e/h.

4. We select randomly a final training subset so that its ratio of easy to hard
examples is given by the expression X -e/h where the coefficient X, X > 0, is
another fixed parameter. The final subset’s size is determined by a parameter
F,0 < F <1, as a fraction of the original dataset. The final subset is used
for training a final classifier with a learning algorithm Ag,ar.

It is not difficult to guess that a particular setting of the parameters presented
above has an important impact on performance of the method. The appropriate
parameter setting is not a trivial task since it depends not only on properties
of the dataset at hand, but also on our preferences with regard to the learning
time, the precision of learned model, and the model size.

2.3 Speeding up the Sampling

In the previous description of our basic sampling algorithm we have stated —
for the sake of simplicity — that the committee should give class predictions
on the whole dataset. On the contrary to this, for the final subset we want to
select only a certain (possibly small) amount of original training examples. Of
course, it makes many computed predictions redundant and, as a consequence,
it means that we would waste computational time for the sampling. Although
the initial classifiers are assumed to be fast, they need some time to predict the
target class. Considering that we want to sample from large datasets and the
number of committee members can be higher as well, we have concerned us with
the question if there is a possibility to estimate the size of a subset of original
dataset which would be sufficient for subsequent processing.

Let s denotes the size of an original dataset. Then we know that the final
subset must contain F - s examples.? It implies that the committee should give
class predictions on F - s examples, at least. So, we run the committee on these
F - s examples and find out that e; examples out of them are easy and h; are
hard, e; + h; = F - s. From the fourth step of the basic algorithm in Section 2.1
we already know that es/ho = X - e1/h; where es and he denote the required
numbers of easy and hard examples in the final subset, respectively. But, at the
same time, ey + ho = F - 5. It follows that

_X-el-(el+h1)

hy - h
oy = hy = M (et i)

X-e1 +h ’ X e +h

Now if hs > hq (which means X < 1) then we need to find some additional
hard examples, otherwise, if e; > e; (which means X > 1) then we need to find
some additional easy examples. Therefore, in the former case, it suffices to let the

2 Rounding to whole numbers is omitted in this section.
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committee judge (ha —hy)-(e1/h1 +1) additional examples to obtain hy — hy new
hard examples, and, in the latter case, it suffices to judge (ex —e1) - (h1/e1 + 1)
additional examples to obtain e; —e; new easy examples. Of course, an important
point here is that we assume the distribution of easy and hard examples to be
the same on the whole original dataset.

This improvement of our basic method makes the sampling algorithm two-
-fold: at first, the committee is applied to F'-s examples, and then it is run on an
additional block of data, whose size is determined by the result of the first run.
As an asset, the committee does not need to explore the whole given dataset,
which significantly saves sampling time in many cases.

3 Experimental Results of Selective Sampling

Table 1. The comparison of results achieved on whole dataset (WD), by selective
sampling (SS), and by random sampling (RS). The initial algorithm A;,;; was c50tree
and the final algorithm Ag,,; was c50boost. The parameters of selective sampling were
set as follows: N =2, I =0.2, F = 0.3, and X = 0.1. The random sampling was set to
select the same resulting fraction of data (30 %).

Dataset | Total Time (sec) Model Size Error Rate (%)
WD SS RS | WD SS RS | WD SS RS

adult 139.3 223 22.1 | 23768 5977 8751 | 14.49 14.40 15.33

letter 81.1 21.3 15.3 | 11691 6966 5484 | 4.69 785 9.73

optical 53.0 119 7.8 | 1771 1009 788 | 247 3.83 448
pendigits | 32.0 88 6.2 | 1703 1122 904 | 1.15 1.49 2.27
quisclas 19.2 83 6.9 | 5447 1829 1713 | 35.24 36.77 36.04
satimage 51.9 12,5 85| 2652 1346 959 | 9.54 9.88 11.31

Table 2. The similar experiment as above, but for the final algorithm c50rules. The
parameters of selective sampling were set here as follows: N =2, I =0.1, F = 0.3, and
X = 0.2. The random sampling was set again to select the same resulting fraction of
data (30 %).

Dataset | Total Time (sec) Model Size Error Rate (%)
WD SS RS |WD SS RS| WD SS RS
adult 89.3 16.2 12.8 327 218 215 | 13.67 14.34 14.80
letter 231.5 29.1 20.3 | 1177 721 548 | 11.03 18.37 19.56
optical 16.0 3.3 1.6 209 108 95 8.64 11.17 13.49

pendigits | 18.1 3.6 2.1 | 188 121 106 | 3.22 480 5.99
quisclas 169 3.5 28| 475 179 180 | 3534 3748 37.16
satimage 240 39 19| 281 138 108 | 13.36 14.65 15.77

At first, we shall show that the selective sampling method really selects repre-
sentative subsets of the training data. A better quality of the dataset obtained
by selective sampling displays a better accuracy of the learned model when com-
pared to the random sampling. In our experiments we tried a family of C5.0 [§]
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algorithms.?> While c50tree has been used as an initial learner, we have used
c50boost and c50rules as final learners: corresponding results on several datasets
explored inside the MetaL project? are shown in Tables 1 and 2, respectively.
These tables show results concerning the total time, the size of learned model,
and its error rate on a test set. All numbers were computed through 10-fold
cross-validation. We can see that the error rate achieved by selective sampling
remains in many cases close to the original error rate. For adult dataset it even
decreased, when c50boost has been used as a final learner. Furthermore, selective
sampling is always better than random sampling in terms of accuracy, except for
quisclas dataset (which has an excessive error rate on the whole dataset, either).
However, it should be noted that this singularity of quisclas dataset does not
mean that the selective sampling is not useful for it at all. If we use c50boost as
the final learner and choose a different setting, namely N =4, I = 0.3, F = 0.3,
and X = 0.3, then we get the following results: Total Time 9.1, Model Size 1831,
and Error Rate 35.58. Thus, the accuracy of selective sampling is better than of
random sampling for quisclas as well, but we must hit the appropriate parameter
setting.

As for the reduction of model size, often the selective sampling is almost as
successful as the random sampling. For adult dataset with c50boost as a final
learner and quisclas dataset with c50rules as a final learner, the selective sampling
produced even smaller model than random sampling did.

Nevertheless, the most significant is the reduction of total time. The total
time comprises the time taken by sampling, training and testing together. It
means that in the case of selective sampling the total time subsumes also the
time spent on learning and application of initial classifiers. Consequently, the
random sampling is a bit faster, but the extra time spent on selective sampling
seems to be really useful, considering the better preserved accuracy. The main
asset of time reduction does not rest in the fact that we are able to shrink
the total time from 51.9 to 12.5 seconds, but the important thing is that 5:1 -
-time reduction with no considerable decrease in accuracy can help the learning
algorithm to scale up to significantly larger datasets.

The results and discussion presented above concern the settings X < 1, when
hard examples are being added to the final subset. We have also tried the settings
X > 1, which means to add easy examples. These settings resulted in a greater
reduction of the total time as well as the model size, however, the accuracy was
worse than that of random sampling.

4 Meta-Learning for Parameter Setting

4.1 Ranking Function

As we could see earlier, particularly in the discussion about “abnormal” quisclas
dataset, the performance of our selective sampling method strongly depends on

% http://www.rulequest.con
* http://www.metal-kdd.org
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the setting of its parameters. Table 3 demonstrates the impact of parameter X
(the coefficient for modifying the original ratio of easy to hard examples) on the
performance criteria. It is not surprising that the demand on a fast processing
and small model goes against the demand on a high accuracy.

Table 3. The impact of parameter X on the resulting time, model size and error rate,
shown on satimage dataset with c50tree as an initial learner and c50boost as a final
learner. The resting parameters are fixed to these values: N =2, I = 0.2, and F = 0.3.
The expression e;/h; denotes the original (observed) ratio of easy to hard examples
whereas the expression es/ho refers to the resulting (computed) ratio. The following
time values are listed: 77 — sampling time, T — training time, T3 — testing time, and
T — total time. Selective sampling with the setting X = 1.0 corresponds to random
sampling, therefore the sampling time is considered to be zero.

X 61/h1 62/h2 T1 Tz T3 T Size EI‘I‘OI‘
0.1 | 1389/348 | 495/1186 | 1.9 10.5 0.1 12.5 | 1346 9.88
0.2 | 1389/348 | 771/965 | 1.7 10.0 0.1 11.8 | 1259 | 10.46
0.3 | 1389/348 | 946/790 | 1.5 9.4 0.1 11.1 | 1176 | 10.57
0.4 | 1389/348 | 1067/668 | 1.4 9.0 0.1 10.5 | 1124 | 10.41
0.5 | 1389/348 | 1157/577 |14 89 0.1 10.4 | 1094 | 10.69
0.6 | 1389/348 | 1225/505 | 1.3 83 0.1 9.7 | 1056 | 10.86
0.7 | 1389/348 | 1279/456 | 1.2 84 0.1 9.8 | 1025 | 11.31
0.8 | 1389/348 | 1322/410 1.2 8.1 0.1 9.4 | 1010 | 11.20
0.9 | 1389/348 | 1358/370 | 1.2 81 0.1 94| 971 | 11.73
1.0 | 1389/348 | 1389/348 | 0.0 84 0.1 85| 959 | 11.31

Therefore, it is clear that search for the best parameters needs to take into con-
sideration not only the properties (the meta-characterisations) of the particular
dataset, but also our preferences with regard to some performance criteria (time,
accuracy, model size). This observation naturally leads to ranking techniques.
Considering our experimental purposes we have resorted to very simple ranking
function which takes into account just time and error rate and not model size:

R(K, Ts/TwaES/Ew) =K- (TS/TM) + (1 - K) . (ES/Ew)

Here Ts and T, are the total times achieved by learning from a sample and by
learning from a whole dataset, respectively. Similarly, Es; and E,, are the error
rates achieved by learning from a sample and by learning from a whole dataset,
respectively. And finally, K, 0 < K < 1 is a balance parameter: K = 0 means
that we are interested only in accuracy and, on the contrary, K = 1 means
that we regard the total time only. We always want to minimise this ranking
function’s value.

4.2 Generation of Meta-Learning Data

As the meta-data characteristics of a dataset we have exploited a learning time
T}, a model size Sp, and an error rate £, of a pilot classifier. The pilot classifier
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was a classifier attained by learning with the initial algorithm A;,;; on a random
sample of a small, fixed size (10 %). The choice of these meta—attributes was mo-
tivated by the fact that these characteristics are cheaper than most of statistical
and information-theory measures to obtain, and also by our belief that for our
purpose they will serve comparably well.

Then, we have run the selective sampling on six datasets with various set-
tings to find out corresponding values of total time Ts and error rate Fg. As
for the tested settings, the values of their particular parameters were drawn
from these enumerations: N € {2,3,4}, I € {0.1,0.2,0.3}, F = 0.3, and X €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. All combinations of these values were
tested. From all the obtained results we have compiled examples for learning
a meta-model. Figure 4 shows an example from a training meta-dataset. Each
training example for meta-learning consisted of attributes which could be di-

Table 4. An example from a meta-dataset compiled from adult dataset. Using c50tree
and c50boost as an initial and a final learner, respectively, for the setting N = 2,
I =02, F = 0.3, and X = 0.1 we got the total time T, = 22.3 and error rate
E; = 14.40 %. Corresponding results on the whole dataset (without sampling) are
Ty = 139.3 and E,, = 14.49 %. Therefore, the resulting value of ranking function is
R(0.1,22.3/139.3,14.40/14.49) = 0.911.

group 1 group 2 group 3 | group 4
7. S E, |[N I F X K R
056 72 0.152 | 2 0.2 03 0.1 0.1 0.911

vided into four groups: 1. data characteristics (pilot classifier results): T}, Sy, Ep,
2. selective sampling parameters: N, I, F', X, 3. balance parameter K, and 4. the
corresponding value of ranking function R(K,Ts/T,, Es/E,). The groups 1,2,3
represent independent (predictive) attributes, while the last attribute (group 4)
is dependent (predicted).

4.3 Learning the Meta-Model

We do not aim at predicting the best parameter setting directly. Instead, a meta-
-model is designed to predict the value of ranking function. When processing an
unseen data, the data characteristics (attributes from the group 1) and the bal-
ance parameter (group 3) are known and we need to find such selective sampling
parameters (attributes from the group 2) which would minimise the ranking
function value (output of the meta-model, group 4).

We decided to use regression trees as a meta-model for our purpose since
in a regression tree it is easy to find values of unknown attributes which would
minimise the output function. For learning the meta-model we utilised the sys-
tem RT4.1 [9] which generates regression trees.” Figure 1 shows a part of the

® http://www.liacc.up.pt/~1ltorgo/RT
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regression tree which we have obtained. If the condition in a node holds than
the left branch is chosen, otherwise the right one.

K <0.65 7

X <0357 1<0.157

/\/\

N<37? R=0.72+0.02 R=0.7340.01 R=0.72+0.04

R=0.691+0.02 R=0.70£0.03

Fig. 1. Example of a regression tree used as a meta-model for parameter setting.

5 Experimental Results of Meta-Learning

Table 5 presents the results of our regression meta-model. We suppose that the
most important performance measure is a Relative Increase in Ranking Value
(RIRV). It is a comparison of ranking values of the predicted parameter setting
and the best known parameter setting for a particular dataset and a learning
algorithm. Hit Rate (HI) is a percentage of those cases when the best known
parameter setting was also predicted. Relative Increase in Error Rate (RIER)
is a comparison of error rates of a resulting (non-meta) classifier obtained from
the predicted parameter setting and a resulting classifier obtained from the best
known parameter setting. Finally, Relative Increase in Total Time (RITT) is
a comparison of total time of a resulting (non-meta) classifier obtained for the
predicted parameter setting and a resulting classifier obtained for the best pa-
rameter setting.

As we can see in Table 5 RITT is negative and RIER is positive. It means that
our regression model tends to predict settings resulting in faster processing, but
worse error rate. All numbers were computed from leave-one-out validation on six
different datasets: adult, letter, optical, pendigits, quisclas, satimage. As we can see,
the meta-attributes 7}, S,, E, made the parameter prediction surprisingly worse.
We obtained more accurate meta-model (especially for c50boost) by not using
those meta-attributes. This is probably due to the fact that the ranking function
has a very similar curve for different datasets and thus the meta-characteristics
do not bring additional information — they mislead the regression model instead.
On the other hand, it should be noted that we have learned our regression model
from relatively small amount of datasets. In fact, the training set in each fold
of the leave-one-out validation consisted of five datasets. However, the presence
of meta-attributes in the case of c50rules final algorithm led to a significant
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increase in hit rate, whereas the ranking deviation stayed at almost the same
level. Therefore, we suppose exploitation of the meta-attributes to be promising.

Table 5. The results of meta-learning for selective sampling with c50tree as an initial
algorithm and c50boost and c50rules as final algorithms.

Algorithm | Meta Att. RIRV HI RITT RIER
c50boost absent 71257 % | 27.3% | -0.5651% | 9.7485 %
c50boost present | 9.9497% | 19.7% | -6.9764% | 13.5287 %
c50rules absent 5.9469 % | 21.2% -3.1301 % 7.3770 %
c50rules present 5.9957 % | 30.3% | -10.6430 % 8.0315 %

6 Conclusion

We have presented a new parametric variant of committee-based selective sam-
pling and a meta-learning technique for setting its parameters. The selective
sampling has been proven useful in reducing the learning time while keeping the
accuracy at a better level than random selection does. The main contribution of
the meta-learning is that its ranking error is fairly low (7.13% for c50boost and
5.95% for c50rules) which is sufficient for a reliable and immediate prediction of
the right parameters setting for selective sampling.
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