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Abstract. Describing a learning task is crucial, not only for meta-
learning but also to gain insight in this learning task. The paper evaluates
the performance of a recent method for assessing quality standards for
case bases when used for a supervised meta-learning. Empirical results
on real-world data show this approach in combination with others as a
promising one.

1 Introduction

The problem of selecting an appropriate model for a given learning task is a
crucial one. Often, there is neither enough time nor space to select learning
algorithms from a given pool by simply trying them out. Thus, as users, we
want to relate to past experiences of and with learners in the pool to predict
which one is most suitable for a given task. This might be in terms of measures
such as predictive accuracy, time, or comprehensibility. In this work, we limit
ourselves to predictive accuracy.

How can we relate to a past experience with a learner, how can we describe
a new learning task adequately? We will concentrate on two already known
strategies for task description here, namely landmarking ([15], [2]) and data
characterization (which we will refer to as DCT due to the name of a software
used to compute the characteristics) ([7], [12], [11]). Additionally, we will exper-
iment with a new approach which has recently been in use in the field of case
base reasoning to assess the quality of case bases. This approach will be used for
meta-learning and will also be combined with other already used measures.

We begin by introducing the already mentioned strategies for task descrip-
tion, landmarking and DCT. Afterwards, we will dwell on the case properties
extracted from case bases to evaluate their quality by possible conflicts between
items within a case base. This is followed by empirical results with real-world
data. Eventually, the last section summarizes the paper and points at future
work.

2 Task Description Strategies

Probably the most common way is to use data characteristics to describe a given
learning task for either classification or prediction. At first, basic information is



computed such as number of classes, number of attributes, both symbolic and
numeric, number of observations and number of missing values. These measure-
ments are supposed to give a first estimation of the learning problem.

They are extended by statistical measures which are supposed to inform
about the distribution of the numeric attributes. For instance, several measures
might be computed to check if the given learning task meets the assumption of a
discriminant analysis. Measures such as eigenvalues and discriminant functions
are computed from the data where the relative proportion of the first discrimi-
nant function is given by

Fract1 =
λmax

d
(1)

where λmax denotes the largest eigenvalue. In addition, the canonical correlation
of the best linear combination of attributes is given by [10]

CanCor1 =
√

λmax

1 + λmax
. (2)

Eventually, information theoretic measurements are computed to test how
much the symbolic attributes contribute to correctly classifying the labeled ob-
jects. The entropy of an attribute A as a realization of a discrete random variable
X with k characteristics is given by [19]

HA = H(A) = −
k∑

i=1

pi log2(pi) (3)

where pi (1 ≤ i ≤ k) is the probability for A taking the ith value (
∑k

i=1 pi = 1).
The entropy of a symbolic target variable with q characteristics, referred to as
the class entropy, is given by

HC = H(C) = −
q∑

i=1

pi log2(pi). (4)

If pij denotes the joint probability of observing class Ci and the jth value of
attribute A, the joint entropy defined as

HCA = H(C,A) = −
∑

i,j

pij log2(pij) (5)

is a measure of the total entropy of the joint system of these attributes, i.e. of all
combinations (C, A). Then, the information gain or mutual information is given
by [16][17]

Igain(C, A) = HC + HA −HCA. (6)

These measurements have been explored for a meta-learning approach within
the StatLog project (1991–1994) and a detailed description can be found in [14].

A completely different approach was chosen by [15] and [2]. Instead of using
measurements for describing a given learning problem statistically which is not



directly related to the performance of algorithms, fast learning algorithms are
used to describe the problem adequately. There is little point in measuring data
characteristics to predict the performance of a classifier if this measurement
process takes longer to execute than running the classifier(s) in question. Rooted
in the StatLog project under the term ”yard stick methods”, this approach is
known as landmarking. The above mentioned authors proposed the use and
motivation of the following landmarkers.

1. Decision Node: Using C5.0’s information gain-ratio [17] a single decision
node is chosen which is then to be used for classifying test observations. The
goal of this landmark learner is to establish closeness to linear separability.

2. Randomly Chosen Node: An attribute is chosen randomly and then used for
splitting the training set and classifying new observations. The goal of this
landmark learner is to inform about irrelevant attributes.

3. Worst Node: By using the information gain ratio again, the least informative
attribute is used to make the single split. Together with the first landmark
learner, this landmarker is supposed to inform about linear separability.

4. Näıve Bayes: The necessary probabilities for using Bayes’ theorem [6] are
computed on the training set in order to classify observations in the test
set. The goal of this landmark learner is in measuring the extent to which
attributes are conditionally independent given the class.

5. 1-Nearest Neighbor: According to the closest observation in the training set,
a new observation in the test set is classified [6]. The goal of this landmark
learner is in determining how close instances belonging to the same class are.

6. Elite 1-Nearest Neighbor: This landmarker works like the previous one, al-
though it is computed on a subset of all attributes. This subset is determined
by the most informative attributes.1

7. Linear Discriminant: Using the training set, a linear target function is com-
puted which is then used to classify observations from the test set [10].

Landmarking proved to be a competitive method for task description since the
results of the landmarkers are directly related to more ”sophisticated” algorithms
instead of the indirect data characteristics. However, we might also want to
consider the meaning and interpretation of possible outcomes. At the end of a
meta-learning experiment, we might like to discover some useful insights into
when algorithms perform well. Thus, data characteristics are still of importance
for meta-learning.

Finally, a meta-data set comprises a number of meta-observations each of
which represents an actual data set. The above described data characteristics
(basic, statistical, and information theoretic measures) and landmarkers are used
as meta-attributes trying to adequately describe the original data sets with the
final aim of model selection. This can be either done by a classification approach
trying to predict the algorithm out of a given learners pool that will yield the

1 Here, only attributes are taken into account for which the information gain ratio
was smaller than 1. This threshold is due to results obtained by [1]. This algorithm
is part of a set of algorithms called Edited 1-Nearest Neighbor.



lowest misclassification rate or by a regression approach where the error rate
of each learner from the pool is to be predicted [3] [11]. In the latter case, it
is up to the user’s experience which of the learners is eventually chosen. In the
section following the next one, we will use different sets of meta-attributes for
meta-learning. Their formation will then be explained in more detail.

3 Case Base Properties

One major drawback of the data characterization scenario is that information
theoretic and statistical measures take either numeric or symbolic attributes into
account. Often though, the measures describing the basic properties of a learning
task, say, contain nearly equally as much information. A possible way of taking
information contained in all attributes into account is to compare observations
with each other. This might be helpful in various ways. A data set may contain
two observations with similar or equal attribute values, but with different labels
which might cause a classifier to get ”confused”. Analogously, there might be two
or more observations which are identical. In such a case, the observation might be
given more weight, however, the information contained in it might be redundant
for the classifier. Also, in this very case, attribute values might be missing, so
that one observation would actually be a subset of another observation. Such
an approach is described in detail in [9]. There, case base properties are used to
assess the quality of given case bases in terms of measures such as redundancy
or incoherency. Following and using the notation given in [9], we will briefly
introduce some necessary requirements for the implementation of the case based
properties which is followed by an example demonstrating the approach. To
begin with, we have to settle on the notation. For a more thorough description,
however, see [9] and [18].

Definition 1 (Cases and Case Base).

1. An attribute aj is a name accompanied by a set Vj := {vj1, . . ., vjk, . . .,
vjNj} of values. We denote the set of attributes as A := {a1, . . ., aj, . . .,
aN}.

2. A problem is a set pi := {pi1, . . . , pij′ , . . . , piNi} with ∀j′ ∈ [1;Ni] ∃aj ∈ A
and ∃vjk ∈ Vj : pij′ = vjk, and ∀j ∈ [1; N ] : |(pi ∩ Vj)| ≤ 1. We denote the
set of problems as P := {p1, . . . , pi, . . . , pM}.

3. A solution si is any item.
4. A case is a tuple ci := (pi, si) with a problem pi and a solution si. A case

base is a set of cases C := {c1, . . . , ci, . . . , cM}.
5. We further assume a separation of C into a training set T and a test set (or

query set) Q with C = T ∪Q and T ∩Q = ∅.
Additionally, we have to define functions to be able to determine the similarity
between two given cases, that is to say two observations.

Definition 2 (Auxiliary Functions). Assume a local similarity measure simj :
Vj × Vj 7→ [0; 1].



1. S↔ : P × P 7→ {1..N},
S↔(pi, pi′) :=

∣∣{j ∈ {1..N} : |pi∩Vj | = |pi′ ∩Vj | = 1 ∧ simj(pij , pi′j) = 1}∣∣
2. S! : P × P 7→ {1..N},

S!(pi, pi′) :=
∣∣{j ∈ {1..N} : |pi∩Vj | = |pi′ ∩Vj | = 1 ∧ simj(pij , pi′j) 6= 1}

∣∣
3. S← : P × P 7→ {1..N},

S←(pi, pi′) :=
∣∣{j ∈ {1..N} : |pi ∩ Vj | > |pi′ ∩ Vj |}

∣∣
4. S→ : P × P 7→ {1..N},

S→(pi, pi′) :=
∣∣{j ∈ {1..N} : |pi ∩ Vj | < |pi′ ∩ Vj |}

∣∣

The overall similarity in the following definition is the normalized weighted sum
of the above introduced and computed auxiliary values. Values coinciding for
the same attribute as positive are considered. Different values, however, do not
contribute positive to local similarity values. Note also that for all other val-
ues (S←(pi, pi′), S→(pi, pi′), and S−(pi, pi′)), weights w←, w→, and w− decide
whether we consider their relations as positive (w = 1) or negative (w = 0).

Definition 3 (Similarity Measure). Assume w←, w→, w− ∈ {0, 1}.
sim : P × P 7→ [0; 1],

sim(pi, pi′) := N−1 ·
(

S↔(pi, pi′) + w← · S←(pi, pi′)

+ w→ · S→(pi, pi′) + w− · S−(pi, pi′)
)

.

Eventually, the case base properties are defined as follows.

Definition 4. Assume G ⊆ C, ci ∈ G, and 1 ≤ ∆ ∈ N.

1. ci consistent within G :⇐⇒ @ci′ ∈ G : si 6= si′ ∧ S↔(pi, pi′)+S←(pi, pi′) =
Ni ≥ Ni′ ∧ S↔(pi, pi′) > 0 ∧ S←(pi, pi′) ≥ 0 ∧ S→(pi, pi′) = 0.

2. ci unique within G :⇐⇒ @ci′ ∈ G, ci′ 6= ci : si = si′ ∧ S↔(pi, pi′) = Ni =
Ni′ ∧ S↔(pi, pi′) > 0.

3. ci minimal within G :⇐⇒ @ci′ ∈ G : si = si′ ∧ S↔(pi, pi′) + S←(pi, pi′) =
Ni > Ni′ ∧ S↔(pi, pi′) > 0 ∧ S←(pi, pi′) > 0 ∧ S→(pi, pi′) = 0.

4. ci incoherent∆ within G :⇐⇒ @ci′ ∈ G : si = si′ ∧ S↔(pi, pi′) +
S!(pi, pi′) + S←(pi, pi′) = Ni = Ni′ ∧ S↔(pi, pi′) > 0 ∧ S!(pi, pi′) ≥
0 ∧ S←(pi, pi′) ≥ 0 ∧ S→(pi, pi′) ≥ 0 ∧ S←(pi, pi′) = S→(pi, pi′) ∧
S!(pi, pi′) + S←(pi, pi′) = ∆.

To illustrate the given definitions, the examples in Table 1 will be helpful. Pairs
of cases, their conflict to each other and the resulting values for the auxiliary
functions in Definition 2 are shown. Note that the symbol ¬ denotes the negation
of a proposition. Note as well that by using these case base properties, suspi-
cious observations which might impair the results of learning algorithms can be
removed which was the original intention behind this approach. This, however,
is more of a preprocessing task which is beyond the scope of our work. Instead,
we use the computed measurements as meta-attributes to add more information
to the meta-learners.



pi si pi′ si′ Proposition S↔ S! S← S→ S− ∆

1 v11 v21 v31 s1 v11 v21 s2 ¬ consistent 2 0 1 0 2 -

2 v11 v21 v31 s1 v11 v21 v31 s1 ¬ unique 3 0 0 0 2 -

3 v11 v21 v31 s1 v11 v21 s1 ¬ mininmal 2 0 1 0 2 -

4 v11 v21 v31 v41 s1 v11 v21 v42 v51 s1 ¬ incoherent2 2 1 1 1 0 2

Table 1. Examples for Pairs of Cases and the corresponding propositions with respect
to general case properties

4 Results

A meta-data set was constructed using 78 data sets from the UCI repository [4].
The number of observations did not exceed 1066, and the number of attributes
ranged from 4 to 69. 32 data sets contained only symbolic attributes, 20 data
sets contained only numeric attributes. The remaining sets were mixed. The data
contained up to 25% missing values. Error rates for ten different classification
algorithms from the Metal project [13] were determined for different subsets of
data characteristics by a ten-fold cross validation, viz. c50boost, tree, and rules
[17], the neural networks clemMLP, clemRBFN, both implemented in Clemen-
tine, the discriminant tree learner Ltree [8], the rule learner RIPPER [5], a linear
discriminant learner, a naive Bayes learner and an instance-based learner. In all
cases, the default settings were used.

To begin with, we tried to evaluate various ways on how to represent the
data adequately. By adequately, we mean a representation that would give an
error rate as small as possible for each algorithm. As a basic set of data char-
acteristics to be used for meta-learning, denoted by DCTb, we computed the
number of attributes, both symbolic and numeric, the number of observations
and the number of classes. Additionally, this basic set was either amended by
the accuracy and standard deviation of the default class, denoted by DCTbd,
or the number of missing values and tuples containing missing values, denoted
by DCTbm. Consequently, DCTbmd represents the combination of all measure-
ments. Additionally, an often proposed strategy is to use seven features given by
the proportion of both symbolic attributes, attributes with outliers and missing
values, the number of observations, the class entropy and mutual information
as well as CanCor1, denoted by DCTcom. Note that we restricted ourselves here
to three base learners, namely Ltree, Naive Bayes, and c50rules. In case, the
learners performed equally, the meta-observation was labelled as ”TIE”. Our
goal was to predict the algorithm with the lowest error rate. The corresponding
error rates for a ten-fold cross-validation are given in Table 2. Obviously, DCTbd

performs best, being significantly better than most other approaches. The infor-
mation contained within the missing values contributes poorly to predicting the
correct class labels whereas the default accuracy seems much more appropriate.

As previously mentioned, we followed various ways to describe a given learn-
ing task. First, we computed data characteristics for a given data set. This was



Meta-learner DCTb DCTbd DCTbm DCTbdm DCTcom

Default Class 63.16 63.16 63.16 63.16 63.16
c50boost 43.42 25.00 44.73 34.21 35.52
c50tree 50.00 43.42 53.94 44.73 40.79
IB 42.11 36.84 43.42 36.84 46.05
Ripper 52.63 52.63 59.21 51.32 39.47

Average 47.04 39.47 50.32 41.78 40.46

Table 2. Percentage error rates for DCT strategies and different meta-learners

followed by computing error rates using the landmarking algorithms as meta-
attributes. Ext-Land is based on the seven landmarkers given in [2] whereas
Landmarking goes without those learners being both in the learners and land-
markers pool, viz. LinDiscr, NB, and IB. Eventually, we computed the case base
properties for each of the data sets for different values of ε, ε = 0.01, 0.05, 0.1,
which indicates the possible distance between observations. As can be seen from
table 3, both Landmarking and Ext-Land perform on average significantly better
than the approach using case base properties, in particular than CBR0.1.

Meta-learner Landmarking Ext-Land CBP0.01 CBP0.05 CBP0.1

Default Class 63.16 63.16 63.16 63.16 63.16
c50boost 56.57 52.68 69.74 60.52 63.16
c50tree 56.58 53.94 59.21 67.11 71.05
IB 55.26 47.36 50.00 57.89 64.47
Ripper 57.89 52.63 59.00 69.73 67.11

Average 56.25 52.30 59.48 63.81 66.45

Table 3. Error rates for different meta-learners and task description strategies

Meta-learner DCTb DCTbd DCTbm DCTbmd DCTcom

Default Class 63.16 63.16 63.16 63.16 63.16
c50boost 38.15 36.82 46.05 42.11 34.12
c50tree 47.36 44.73 51.31 47.37 40.29
IB 47.36 39.47 51.31 44.73 44.39
Ripper 57.89 55.26 55.26 48.68 42.32

Average 47.69 44.07 50.98 45.72 40.28

Table 4. Error rates for different meta-learners combining case base properties with
ε = 0.01 and various DCT strategies



Meta-learner DCTb DCTbd DCTbm DCTbmd DCTcom

Default Class 63.16 63.16 63.16 63.16 63.16
c50boost 40.78 35.52 42.11 34.21 36.21
c50tree 38.15 39.47 40.79 40.79 42.11
IB 51.31 43.32 55.26 47.36 42.11
Ripper 61.84 56.57 53.94 47.36 44.32

Average 48.02 43.72 48.03 42.43 41.19

Table 5. Error rates for different meta-learners combining case base properties with
ε = 0.05 and various DCT strategies

Meta-learner DCTb DCTbd DCTbm DCTbmd DCTcom

Default Class 63.16 63.16 63.16 63.16 63.16
c50boost 48.68 39.47 43.42 38.15 37.24
c50tree 40.79 43.42 44.73 43.42 43.16
IB 57.89 46.05 59.21 48.68 44.73
Ripper 56.57 59.21 57.89 55.26 43.42

Average 50.98 47.03 51.31 46.38 42.13

Table 6. Error rates for different meta-learners combining case base properties with
ε = 0.1 and various DCT strategies

Tables 4 through 6 show error rates of meta-learners on combined measures
from DCT and the case base approach. Although results on the average dete-
riorate, they are still quite similar when compared to table 2. This seems in
particular interesting, since we added a total of ten variables from the case base
approach to the different DCT approaches and the meta-data set consists only
of 78 observations. It is our believe that by choosing the right mixture of DCT
and case base measures, we might improve meta-learning, although maybe not
significantly. Encouraged by our results, we tried to evaluate them using all
learners as base and as meta-learners. The results for DCT strategies are given
in table 7. On average, all methods perform better than the default. The missing
values could not be computed. Table 8 shows the results for the landmarking
and case-based reasoning approaches. Again, methods perform better than the
default on average, though sometimes close to it. Tables 9 through 11 show var-
ious combinations of DCT strategies and case base measures. Again, the results
of the learners on average are not much different from the case when using only
DCT. This is particularly true for ε = 0.1.

5 Conclusions and Future Work

We have presented a new approach for task description as a means of model
selection in meta-learning. Tasks are described by their similarity, consistency,
incoherency, uniqueness and minimality. While this method does not outperform
any of the existing approaches on its own, combinations of methods seem very



Meta-learner DCTb DCTbd DCTbm DCTbdm DCTcom

Default Class 77.63 77.63 77.63 77.63 77.63
C5.0boost 67.11 61.84 64.47 63.16 63.16
C5.0rules 65.79 67.11 61.84 64.47 64.48
C5.0tree 67.11 69.74 64.48 65.79 64.48
ClemMLP 77.61 73.68 80.26 77.63 77.63
ClemRBFN 68.08 ? 62.91 ? 78.19
LinDiscr 68.42 76.32 75.00 78.95 78.95
Ltree 67.11 68.42 67.11 67.11 72.37
IB 64.47 68.42 65.79 69.74 68.42
NB 73.68 69.74 77.63 76.32 86.84
Ripper 64.47 69.74 69.73 68.43 68.42

Average 68.38 69.44 68.92 70.18 72.29

Table 7. Percentage error rates for DCT strategies using all learners as base and
meta-learners

Meta-learner Landmarking Ext-Land CBP0.01 CBP0.05 CBP0.1

Default Class 77.63 77.63 77.63 77.63 77.63
C5.0boost 61.84 78.95 68.42 75.00 71.05
C5.0rules 65.79 78.95 68.42 75.00 71.05
C5.0trees 64.47 77.63 69.73 73.68 71.05
MLP 80.26 77.63 80.26 80.26 78.94
RBFN 70.58 80.26 ? 84.21 75.00
LinDiscr 84.21 75.00 72.37 73.68 72.37
Ltree 64.47 76.31 73.68 77.68 71.05
IB 64.47 68.42 71.05 80.26 77.63
NB 73.68 77.63 80.26 71.05 76.31
Ripper 71.05 75.00 76.31 78.95 73.68

Average 70.08 76.58 73.39 76.97 73.82

Table 8. Error rates for different meta-learners and task description strategies using
all learners as base and meta-learners



Meta-learner DCTb DCTbd DCTbmd

Default Class 77.63 77.63 77.63
C5.0boost 61.84 61.84 65.79
C5.0rules 68.42 67.11 68.42
C5.0trees 68.42 67.11 67.11
MLP 80.26 81.58 78.95
RBFN 81.58 81.58 78.95
LinDiscr 72.37 73.68 69.74
Ltree 71.05 71.05 69.74
IB 68.42 71.05 75.00
NB 73.68 73.68 75.00
Ripper 68.42 71.05 72.37

Average 71.44 71.97 72.11

Table 9. Case base properties using ε = 0.01 and various DCT strategies using all
learners as base and meta-learners

Meta-learner DCTb DCTbd DCTbmd

Default Class 77.63 77.63 77.63
C5.0boost 60.52 61.84 60.53
C5.0rules 63.16 64.47 65.79
C5.0trees 67.11 67.11 67.11
MLP 80.26 77.63 81.58
RBFN 76.31 76.31 76.32
LinDiscr 73.68 75.00 73.61
Ltree 68.42 69.73 69.74
IB 67.11 68.42 73.68
NB 68.42 67.11 67.11
Ripper 73.68 71.05 73.68

Average 69.87 69.87 70.92

Table 10. Case base properties using ε = 0.05 and various DCT strategies using all
learners as base and meta-learners



Meta-learner DCTb DCTbd DCTbmd

Default Class 77.63 77.63 77.63
C5.0boost 59.21 63.16 63.16
C5.0rules 63.16 63.16 63.16
C5.0trees 63.16 64.47 63.16
MLP 78.95 78.95 77.63
RBFN 85.52 82.83 84.21
LinDiscr 73.68 77.63 77.63
Ltree 60.53 61.84 61.82
IB 69.73 69.73 69.73
NB 71.05 69.73 67.11
Ripper 71.05 69.73 76.31

Average 69.61 70.13 70.39

Table 11. Case base properties using ε = 0.1 and various DCT strategies using all
learners as base and meta-learners

promising, in particular for real-world data. Using case base properties might also
help in understanding why methods perform differently. However, this serves as
an outlook for future work. We also intend to use larger data sets for creating our
meta-data set and to eventually use a larger meta-data set itself. Additionally,
we want to evaluate useful combinations including landmarkers as well as testing
which distance measure is most appropriate for meta-learning. One problem to
overcome is the computational complexity of the case base properties. Since the
complexity is quadratic, we think about drawing samples of smaller sizes, as the
size of data sets increases. In general, this seems to be an interesting field of
research.
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