Numeric Relational Multi-Attribute Models in Qualitative Multi-Attribute Method DEX

Nejc TRDIN1,2, Marko BOHANEC1,2

1"Jožef Stefan" Institute, Ljubljana, Slovenia
2Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

18. June 2014
Motivation

- DEX is a qualitative MCDM methodology, supported by implementation in DEXi
- It has been applied numerous times; ecology, financial domains, evaluation of projects, medicine, etc.
- More flexibility in methodology is needed, specifically in the direction of relational models and numerical attributes.
Overview

1. DEX methodology
2. Formalization of DEX
3. Numeric relational models
4. Use-Case
5. Conclusion
The DEX methodology

State of the art: General

A qualitative multi-criteria decision making methodology
- Developed model is a hierarchy of attributes
- All attributes have symbolic values

Attribute A:
- most basic building block in the methodology.
- $D(A)$ is the domain: finite array of qualitative-symbolic values.

For example:
- $D(A_1) = [low, medium, high]$
- $D(A_2) = [yes, no]$
- $D(A_3) = [2_or_less, 3, 4, more_than_4]$
Aggregated attribute A:
- logical combination of lower level attributes...
- ..., into a higher level concept.

Total aggregation function (defined by a table)

$$F_A : D(A_1) \times D(A_2) \times \ldots \times D(A_n) \rightarrow I(D(A)).$$
Formalization - DEX
Aggregated attribute - Function example
Formalization - DEX

Model

M

I_1, I_2, ..., I_n

A_1, A_2, A_3, A_4, A_5

O_1, O_2, O_m

"Tree" of attributes

"Links" between attributes

Model input attributes

[I_1, I_2, ..., I_n]

Model output attributes (roots)

[O_1, O_2, ..., O_m]

Model aggregated attributes

[A_1, A_2, ..., A_k]
Formalization - DEX

Model

Model input attributes

\[[I_1, I_2, \ldots, I_n] \]
Formalization - DEX

Model

- Model input attributes
 \([I_1, I_2, \ldots, I_n]\)
- Model output attributes (roots)
 \([O_1, O_2, \ldots, O_m]\)
Formalization - DEX

Model

- Model input attributes \([I_1, I_2, \ldots, I_n]\)
- Model output attributes (roots) \([O_1, O_2, \ldots, O_m]\)
- Model aggregated attributes \([A_1, A_2, \ldots, A_k]\)
Formalization - DEX

Model

- Model input attributes \([I_1, I_2, \ldots, I_n]\)
- Model output attributes (roots) \([O_1, O_2, \ldots, O_m]\)
- Model aggregated attributes \([A_1, A_2, \ldots, A_k]\)
- "Tree" of attributes
Formalization - DEX

Model

- Model input attributes \([I_1, I_2, \ldots, I_n]\)
- Model output attributes (roots) \([O_1, O_2, \ldots, O_m]\)
- Model aggregated attributes \([A_1, A_2, \ldots, A_k]\)
- "Tree" of attributes
- "Links" between attributes
Qualitative relational models

Motivational example

Evaluation of a company

- Company consists of many departments
- Each department has to be evaluated. Each evaluation has to contribute to the final evaluation of a company.
- A company also has other "non-relational" attributes: Stock price, credit standing, number of buildings, number of employees, etc.

What is needed

- One model for evaluation of n departments
- Aggregation of n values into one single value
- One model for evaluation of the whole company
Qualitative relational models
Motivational example

Company

A

Department
Qualitative relational models

Motivational example
Qualitative relational models

Definition

A decision problem/alternative has the *Relational property* when it is composed of arbitrary number of similar sub-components.

Examples

- Many decision problems have relational properties.
- For example:
 - Evaluation of a company;
 - Assessing reputational risk of a bank.
- In DEX, relational problems were so far solved by ad-hoc manual or programmatic manipulation of models.
- We propose an extension to DEX methodology.
Relational aggregated attribute RA:
- a special type of attribute.
- it is placed as a model input.
- has an input from arbitrary number ($m > 0$) of aggregated attributes belonging to some other relational model.
- has one output.
- Function
 \[
 F_{RA} : (D(I_{RA,1}) \times D(I_{RA,2}) \times \ldots \times D(I_{RA,m}))^n \rightarrow D(RA).
 \]
- When $m = 1$, F_{RA} is typically a mathematical function: min, max, mode or median. We can compute a distribution, set or interval over n values.
- In general case, a custom function needs to be defined.
Qualitative relational models

The qualitative relational model extension has been implemented and along with a qualitative use-case presented at a conference.

Numeric attributes

- More and more decision problems include qualitative and quantitative attributes.
- There is a need to aggregate such attributes.

- 6 "basic" function types!
- The most problematic functions are the ones with qualitative and quantitative input attributes.

Addition

The domain of each attribute D, can now also be of numeric type (integer or real). The domain type is determined by the decision maker.
Numeric relational models

Numeric relational aggregated attribute

- Numeric relational aggregated attribute RA:
 - Function
 \[F_{RA} : (D(I_{RA,1}) \times D(I_{RA,2}) \times \ldots \times D(I_{RA,m}))^n \rightarrow D(RA). \]
 - When $m = 1$, F_{RA} is typically a mathematical function. Additionally to min, max, mode and median, we can compute mean. A distribution, set or an interval over n values can also be computed.
 - In general case, a custom function of n numeric variables needs to be defined.
OVJE
Sustainability assessment of electric energy production technologies

- Sustainability assessment of electric energy production technologies in Slovenia with emphasis on nuclear technology.
- National project with an industrial partner.

Two models:
1. For evaluation of electricity production technologies.
2. For evaluating a mix of electricity production technologies.

Model (1): Evaluation of particular technology in general.

Model (2): Evaluation of a technology mix, provided a mix of 8 technologies.

Model (2) was also used for evaluation considering 6 events, from now till year 2050.

Several attributes from model (1) were relationally connected to model (2).
OVJE
Overview of features used

- Mostly qualitative attributes and qualitative rule-based functions are used.
- Three numeric attributes are used for computing the weight of particular technology in the mix.
- Relational aggregation for assessing the evaluation of mix (used as input to model (2)).
- Distributions are used as inputs and also during evaluation.
8 relationally aggregated attributes.

Each has two inputs: (1) numeric and (2) qualitative:
1. Contribution (weight) of each technology in the mix, based on the *power output* and *produced energy*.
2. Certain important attributes from model (1): feasibility, health effects, carbon emission, etc.

Aggregation is done by weighting each evaluation (from model (1)) with its corresponding weight. Generally, a distribution is output.
OVJE

Online evaluation view

Available on: http://nejctrdin.com/ovjeGEN/
Conclusion

- DEX methodology
- Qualitative and numeric relational models
- Use-case for utilization of numeric relational models