

Branko Kontić, Marko Bohanec, Nejc Trdin, Davor Kontić, Sonja Zagorc-Kontić, Maruša Matko

Jožef Stefan Institute, Ljubljana, Slovenia

Comparative evaluation of various energy options using qualitative multi-attribute models

Introductory note

The interest of reconsidering national energy development policy appears regularly every 20-30 years; it may be triggered by special events, like Tschernobyl 1986; political orientation on environmental protection and climate change: Rio 1992, Johannesburg 2002, Copenhagen 2012, IPCC 2014; Fukushima 2011; etc.

Interrelations and perception about

Strategic evaluation

Sustainability appraisal

Uncertainty of long-term predictions

Common expressions on sustainability

- Brutland's definition
- Balance between social, economic and environmental components
- Protection of resources (prudent use) care for future generations
- Sustainable development

However, there is little (no) practical guidance on, e.g.,

- When the balance is acheved (1/3 + 1/3 + 1/3)?
- Which are the measurable indicators of each of the components?
- How much use of a particular resource is "prudent"?
- How far are we from sustainable development? How do we know we are already there?

Therefore

- There is a continuous development of the understanding of sustainability – new and specific definitions appear in each and specific context
- Participation is open for all interested parties inclusive and creative approach is desired and required
- Interests and goals are the leading and prevailing components of the perception of sustainability – agreement is difficult to achieve due to controversial standpoints

Having such "undefined" situation – is sustainability appraisal feasible and beneficial anyway? Isn't it better to stick to "strategic assessment"?

Energy options – Sustainability – Decision Making

Electric energy production options:

- Needs assessment (timeframes)
- Present capacities (lifetime)
- Technology alternatives (present, future)
- Energy mix: shares of production capacity (technology)

Sustainability:

- Goals (interests, value judgments, preferences)
- Indicators (effectiveness, measurability)
- Participation

Decision-making; ethics and democracy:

- Wisdom (Is it wise?...timeframes, uncertainty)
- Fairness (Is it fair?...equity, justice)
- Benefit (Is it good?...measurement and perception)

Complexity of sustainability appraisal – participation!

What is a decision about?

vision → strategy → policy → plan → program → project

Sustainability indicators – common list

Climate change Ecology (flora in faun, biodiversity) Fuel and raw materials Economy, reliability, affordability Water Quality Waste Air Quality Transport Noise Landscape Cultural heritage Soil protection Health and welfare Sustainable community

Sustainability indicators – our approach

Main (aggregated) indicators	Note on sustainable development			
Cost/Value	Sustainable development does not mean			
Supply Reliability	having less economic growth. On the contrary, a healthy economy is better			
Economic/Technological Advancement	able to generate the resources for environmental improvement and			
Risk/Uncertainty Management	protection, as well as social welfare. It			
Environmental and Health Impacts	also does not mean that every aspect of the present environment should be			
Welfare of local and regional communities	the present environment should be preserved at all cost (<i>extremism</i> , <i>fundamentalism</i>). What it requires is that decisions throughout society are taken with proper regard to their environmental impact and implications for wide social interests. Sustainable development <i>does mean</i> taking responsibility for policies and actions.			

Main (aggregated) indicators	Goals/objectives as a basis for specification of sub-indicators and development of the evaluation criteria			
Cost/Value	Development of competitive (least cost) electricity production			
Supply Reliability	The energy payback ratio			
Economic/Technological Advancement	Development of an electricity system expansion plan that minimises greenhouse gas emission			
Risk/Uncertainty	Enhancement of the welfare of local communities; growth of social capital across region			
Management Environmental and Health Impacts Welfare of local and	Protection and improvement of the health of all residents and workers (good access to health care, reduced health inequalities, affordability of safe and quality nutrition, availability of recreation zones/infrastructure, nursing/work/social inclusion for elderly people, clean and healthy environment, safe urban areas, etc.)			
regional communities	Changes/improvements in regional and local employment Improvement of economic benefit to the community (to reduce disparities in income; access to jobs, housing, and services between areas within the region and between segments of the population; access to better and effective education; energy efficiency; etc.)			
	Maintenance of high and stable levels of economic growth (good accessibility to business within the region, stronger linkages between firms and the development of specialism within area, local strengths and economic value locally, emergence of new and high technology sectors and innovations, etc.). Effective protection of the environment (maintenance and enhancement of the quality and distinctiveness of the landscape; making towns more attractive places to live in; maintenance and improvement of the quality of air, ground and river water; reduced contribution to climate change (greenhouse gases); moving up through the waste management hierarchy; to apply reasonable, long-term land-use planning considering open space; improvement of resource efficiency; etc.)			
Note on sustainable deve	Note on sustainable development: Sustainable development does not mean having less economic			
environmental improveme every aspect of the presen What it requires is that	<i>y</i> , a healthy economy is better able to generate the resources for ent and protection, as well as social welfare. It also does not mean that t environment should be preserved at all cost (<i>extremism</i> , <i>fundamentalism</i>). decisions throughout society are taken with proper regard to their implications for wide social interests. Sustainable development <i>does mean</i>			
taking responsibility for policies and actions.				

Sustainability indicators

Issue: Measurability without site specification?!

Common indicators		Our approach			
Торіс	Specification; unit of measurement	Understanding	Specification; unit of measurement		
Climate change	GHG emission; CO ₂ emission; t/MWh	Global issue; not possible to "see" impacts of concrete power plant on a specific site	Compliance with global policy; "good", "in progress"		
Health and welfare	Pollution related; environmental epidemiological studies; YOLL, YPLL, DALY, etc.	Pollution is preventable (by development level); access to health care to all citizens, vital economy – no poverty; it is crucial to have a job!	Contribution of the energy system to societal development; revenue share of energy production returned to national budget		
Waste	Amount; t/MWh	Isolation; safety culture	Proper land-use		

Level of evaluation

e.g., noise, cooling towers, access roads, specific fish species, etc.

e.g., total installed capacity, spatial availability and land-use, reliability, financing, etc.

Sustainability indicators – our approach

Agreement about top level indicators:

Feasibility, Rationality, Uncertainty of the energy options

V

Multi-attribute modelling

Models

1. Model for comparative evaluation of technology options

- Multi-attribute DEX model
- Technologies: hydro, coal, oil, gas, nuclear, bio, PV, wind, (import)
- 2. Model for comparative evaluation of technology mix options
 - Multi-attribute DEX model
 - Technological share in technology mix: installed capacity
 - Technological share in annual energy production reliability and availability (annual operational hours).

3. Evaluation of the scenarios

Evaluation of the technology mix options in the period 2013–2050

Model for comparative evaluation of technology options

Model for comparative evaluation of technology mix options

Model for comparative evaluation of technology mix options

Evaluation of the scenarios

Scenario decisions

Event	Year
Close-down of the NPP Krško Unit 1	2023
Construction of the NPP Krško Unit 2	2025
Construction of HPP Spodnja Sava	2025
Construction of gas fired PP	2025
Close-down of TPP Šoštanj 5	2027
Construction of HPP Srednja Sava	2035

64 scenarios in total considered

Implication of scenario decisions

	Year	2023	2025	2025	2025	2027	2035
	Explanation	Close-down of the NPP Krško Unit 1	Construction of the NPP Krško Unit 2	Construction of HPP Spodnja Sava	Construction of gas fired PP	Close-down of TPP Šoštanj 5	Construction of HPP Srednja Sava
POWER	Hydro	0	0	74	0	0	330
ENERGY		0	0	252	0	0	1122
POWER	Coal	0	0	0	0	-345	0
ENERGY		0	0	0	0	-1656	0
POWER	Oil	0	0	0	0	0	0
ENERGY		0	0	0	0	0	0
POWER	Gas	0	0	0	600	0	0
ENERGY		0	0	0	3000	0	0
POWER	Nuclear	-700	1600	0	0	0	0
ENERGY		-2520	11520	0	0	0	0
POWER	Bio	0	0	0	0	0	0
ENERGY		0	0	0	0	0	0
POWER	PV	0	0	0	0	0	0
ENERGY		0	0	0	0	0	0
POWER	Wind	0	0	0	0	0	0
ENERGY		0	0	0	0	0	0
Units: POWER in MW; ENERGY in GWh							

Results of the evaluation of technology options

Hydro: less suitable – very suitable Coal: not suitable Oil: not suitable poor – suitable Gas: Nuclear: poor – very suitable not suitable Bio: not suitable PV: Wind: not suitable not suitable Import:

Results of the dynamic evaluation of scenarios

http://nejctrdin.com/ovjeGEN/

Results regarding efficiency of sustainability appraisal

Our approach to defining sustainability indicators for DEX modeling purposes better than other approaches deals with attribute definition, transparency of the evaluation, and treatment of options' uncertainty. It also includes a solution for spatial availability/feasibility of the technology mix options. In addition, the approach avoids ineffectiveness of the overall evaluation due to site uncertainty of concrete energy infrastructure objects, since the evaluation is performed on high strategic level instead of treating concrete objects on concrete locations - project level.

Input to decision-making

Base load supply: nuclear, coal, hydro (continuation of present policy)

Total supply: nuclear, coal, hydro; reasonable other RES introduction

Contact

Dr. Branko Kontić, Jožef Stefan Institute, Ljubljana, Slovenia

E-mail: Branko.Kontic@ijs.si

Looking forward to all your questions and comments!