Qualitative multi-attribute decision method DEX: Theory and practice

Marko Bohanec, Nejc Trdin

Jožef Stefan Institute, Department of Knowledge Technologies, Ljubljana, Slovenia

Outline

- Method DEX
 - Informal introduction
 - Formal representation of DEX models

The Art of Modeling BARCELONA 2014

- Methods for development and exploitation of DEX models
- Software
- Applications

What is DEX?

Decision Support, Multi-Attribute Modeling Methodology

What is DEX?

DEX

Multi-Criteria Decision Analysis

- modeling using criteria and utility functions
- problem decomposition and structuring
- evaluation and analysis of decision alternatives

Artificial Intelligence Expert Systems

- qualitative (symbolic) variables
- "if-then" rules
- decision model = knowledge base
- handling imprecision and uncertainty
- transparent models, explanation
 Machine Learning

Fuzzy sets

The Art of Modeling BARCELONA 2014

- verbal measures
- fuzzy operators

Multiattribute Decisionmaking Using a Fuzzy Heuristic Approach

JANET EFSTATHIOU AND VLADISLAV RAJKOVIČ

Abstract—Multiattribute decisionmaking (DM) is treated as a special kind of structured human problem solving. Emphasis is placed on the use of the available knowledge about utilities, which is obtained by combining beuristics and traditional aggregation methods. In this way, the problem of partial utilities and their interdependence may be solved. A fuzzy approach to DM is described, incorporating linguistic variables, relations, and algorithms. It is summarized in a formal model and illustrated by an example.

			TABLE I PARENTS		
an org	a Di Nature	D2 Performance	D3 Size	D4 Price	('tility
approa	C sc, non~sc	good	s	cheap	v ³ high
l) in	it			rcas.	v high
no	o ::	10	**	dear	low
2) co	DI sc, non-sc	good	med, small	cheap	v ² hígh
3) th	ч ме	••	"	reas.	high
	"	"	н	dear	lov
gi	C sc, non-sc	good	med. large	ch: ap	med.
In th	ni "	11		reas.	med. low
nceri	n "	м	11	cheap	100
ges. V	sc, non-sc	med.	small	cheap	v^3 high
prov	re "			reas.	high
fuzzy	У	21	"	dear	v low
1]. At e achi	e sc, non-sc	med.	med. small	cheap	high
The	6 "	**	"	reas.	med, high
1) T	h "		11	dear	v low
e levo	sc, non-sc	med.	med. large	reas.	low
	sc, non-sc	poor	small	reas.	med. high
	sc, non-sc	good, med, poor	large	cheap, reas, dear	v ³ low

DEX

ORS

Method for qualitative multi-attribute modeling

DEX is similar to other multi-attribute methods:

- 1. Multiple attributes, hierarchically structured
- 2. Evaluation of alternatives: bottom-up aggregation

Liubliana. Sloveniia

Method for <u>qualitative</u> multi-attribute modeling

DEX is different from the majority of multi-attribute methods:

The Art of Modeling BARCELONA 2014

13th-18th July

1. Attributes are discrete, symbolic, qualitative

DEX

Method for <u>qualitative</u> multi-attribute modeling

DEX is different from the majority of multi-attribute methods:

The Art of Modeling BARCELONA 2014

 Attributes are discrete, symbolic, qualitative Attribute scales can be <u>unordered</u> (categorical), but are typically <u>preferentially ordered</u> (increasing or decreasing)

Method for <u>qualitative</u> multi-attribute modeling

DEX is different from other multi-attribute methods:

2. Evaluation of alternatives (aggregation) is defined by *decision tables*

Model: Attributes: Hierarchy: $S: X \to 2^X$

M = (X, S, D, F) $X = \{x_1, x_2, \dots, x_n\}$ so that $\forall x \in X : x \notin S^*(x)$

descendants of X no cycles

Model: Attributes: Hierarchy:

M = (X, S, D, F)es: $X = \{x_1, x_2, \dots, x_n\}$ ny: $S: X \to 2^X$ so that $\forall x \in X: x \notin S^*(x)$

descendants of X no cycles

Model: Attributes: Hierarchy:

M = (X, S, D, F) $X = \{x_1, x_2, \dots, x_n\}$ $S: X \to 2^X$ so that $\forall x \in X : x \notin S^*(x)$

descendants of X no cycles

Model: M = (X, S, D, F)Value scales: $D = \{D_1, D_2, \dots, D_n\}$ for i = 1, 2, ..., n: $x_i \in D_i$ $D_i = \{v_i^1, v_i^2, \dots, v_i^{d_i}\}, d_i > 1$ For an increasing D_i : $v_i^j \leq_i v_i^{j+1}$, $j = 1, 2, ..., d_i - 1$ For a decreasing D_i : $v_i^{j+1} \leq_i v_i^j$, $j = 1, 2, ..., d_i - 1$ Each D_i is partitioned into B_i , N_i , G_i so that $D_i = B_i \cup N_i \cup G_i$ and $B_i \leq N_i \leq G_i$

Model: M = (X, S, D, F)Utility (aggregation) functions:

 $F = \{F_i | x_i \text{ is aggregate}\}$ $F_i : \times_{s \in S(x_i)} \to E_i, \text{ total}$

Possible formulations of E_i :

"Basic": $E_i \equiv D_i$

 $E_i \equiv D_i$ if SAFETY=good & COMFORT=med then TECH.=good

"Practical": $E_i \equiv \text{interval over } D_i$

The Art of Modeling BARCELONA 2014

if SAFETY=good & COMFORT=good then TECH=[good,exc] (or ≥good)

"Extended": $E_i \equiv \text{distribution over } D_i \text{ (probabilistic, fuzzy)}$ if SAFETY=good & COMFORT=med then TECH=(good/0.7; exc/0.3)

DEX Method: Dynamic Aspects

The Art of Modeling BARCELONA 2014

How to:

- Obtain model and its components?
- Verify model and its components (e.g. for completeness and consistency)?
- Deal with uncertainty? •
- Ensure transparency, comprehensibility?
- Support model dynamics?

How to:

- Obtain and represent data about alternatives?
- Deal with incomplete, uncertain data?
- Explain and justify results?
- Validate results?
- Carry out the analyses? • Which analyses?
- Assess the quality of • decision?

- A A 🔒 🙀

Preview

Page 1/1

Functionality:

- creation and editing of qualitative DEX models: •
 - model structure
 - decision tables
- acquisition and evaluation of alternatives •
- analysis of alternatives: "what-if", "±1 analysis", comparison of alternatives, selective explanation ٠
- tabular and graphical reports •

DEXI - [CAR [Car.dxi]] Image: Second Secon	Decision rules CAR Inacc X X Vuse PRICE TECH.CHAR.CAR Ihigh bad unacc Phigh acc unacc Phigh acc unacc Smedum bad unacc Smedum bad unacc fmedum acc acc 7medum good good good madum acc acc recH.cHAR.CAR Ihigh cec unacc Nues Rules:12/12(100,00%), determined:100,00% [unacc6 K) Cancel Concel Con	DEXi - [CAR [*Cardon]] Carl Carl	DEXI Car dxi 9.7.14 Plus-Minus-1 analysis Attribute -1 Car2 +1 GAR good BUY PRICE unacc medium exc HERS more] LUGGAGE big] SAFETY unacc medium exc HEDOORS 4 LUGGAGE big] SAFETY unacc medium exc HERS more] HERS
IFORS The Art of Modeling	LONA 2014		●● Institut ●● "Jožef Stefan" ■ Ljubliana, Slovenij

13th-18th July

Obtaining attributes, their value scales and model structure:

 Expert modeling, 'hand-crafting', following guidelines and 'rules of thumb'

💥 DEXi - [CAR [Car.dxi]]	
👫 <u>F</u> ile <u>E</u> dit <u>W</u> indow <u>H</u> elp	_ <i>8</i> ×
D 🖻 📕 🗎	
Model 🔅 Options ∑ Evaluation 1	<u>r</u> ts
CAR PRICE MAINT.PRICE COMFORT COMFORT COMFORT COMFORS COMFORS CAR MAINT.PRICE COMFORT PRICE MAINT.PRICE COMFORT PRICE COMFORT PRICE COMFORT PRICE COMFORT PRICE COMFORT PRICE COMFORT PRICE COMFORT PRICE COMFORT PRICE PRICE COMFORT PRICE	Attribute Name [CAR] Description Quality of a car Scale Image: Imag
 Attributes: 10 (6 basic, 0 linked, 4 aggregate) So	ales: 10 Functions: 4 Options: 2

The Art of Modeling BARCELONA 2014

- Machine learning from data (methods: HINT, Model Revision)

13th-18th July

Acquisition of decision tables and decision rules

- Active support
- Three "strategies":
 - Direct
 - 'Use scale orders' (based on dominance)
 - 'Use weights' (based on attributes' weights)
- Validation:
 - Consistency (based on dominance)
 - Completeness (% determined function values)

The Art of Modeling $| : A \in \mathbb{C} = | (0) | A | 2014$

- Principle:
 - 'The user is always right' (but warned if considered to be in error)

3	Decision ru	les CAR		- • • ×	
[unacc	•	X	 Use scale orders Use weights 	
	PRICE	TECH.CHAR.	CAR		
1	high	bad	unacc]	
2	high	acc	unacc		
3	high	good	unacc		
4	high	exc	unacc		
5	medium	bad	unacc		
6	medium	acc	<=good		
7	medium	good	good		
8	medium	exc	exc		
9	low	bad	unacc		
10	low	acc	good		
11	low	good	exc		
12	low	exc	exc		
Ru	les: 8/12 (66,	.67%), detern	nined: 94,44%	% [unacc:7,acc:1,good:3,exc	3
•	ଦେ ମା 🖺	1 🛍		<u>O</u> K <u>C</u> ancel	

The Art of Modeling BARCELONA 2014

Transparency: Representation and visualization of decision rules

*	Decision ru	les CAR		
ļ	inacc	•	· × 🗈	1 %
	PRICE	TECH.CHAR.	CAR	
1	high	bad	unacc]
2	high	acc	unacc	
3	high	good	unacc	
4	high	exc	unacc	
5	medium	bad	unacc	
6	medium	acc	acc	
7	medium	good	good	
8	medium	exc	exc	
9	low	bad	unacc	
10	low	acc	good	
11	low	good	exc	
12	low	exc	exc	
Ru	les: 12/12 (1)	10.00%) dete	ermined: 10	0.00% [upace#
Intu	103, 12/12 (1)	10,00 /8), üete	innieu. 10	o,oo /o [unacc.c
-)	ର ମା 🖺	n 🛍 🛛 🖸	K	<u>C</u> ancel

0

	PRICE	TECH.CHAR.	CAR
	60%	40%	
1	high	*	unacc
2	*	bad	unacc
3	medium	acc	acc
4	medium	good	good
5	low	acc	good
6	>=medium	exc	exc
7	low	>=good	exc
		CAP	

Aggregate rules

3D point-by-point graphic

> etitut ložef Stefan"

iubliana. Sloveniia

exc

The Art of Modeling BARCELONA 2014

Bridging the gap between qualitative and quantitative value functions

🔆 Decision	rules CAR				_ D _X				
unacc		▼ × ₽	1	VISION US	e scale orders e weights				
PRICE 1 high 2 high 3 high 4 high 5 medium 6 medium 7 medium 8 medium 9 here	TECH.CHA bad acc good exc bad acc good exc bad	R. CAR unacc unacc unacc unacc unacc unacc acc good exc unacc							
10 low	300	and	-						
10 10 1		guuu	-		Weights: CAR				
11 low 12 low	good exc	exc	-		Weights: CAR Attribute	0	50 100	Required	Current
11 low 12 low Rules: 11/12	good exc (91,67%), de	exc exc termined: 100,0		c:6,acc:1	Weights: CAR Attribute PRICE	0	50 100	Required	Current 60
11 low 12 low Rules: 11/12 low	good exc (91,67%), de	exc exc termined: 100,0	00% [unace	c:6,acc:1 K	Weights: CAR Attribute PRICE TECH.CHAR.	0		Required 50 50	Current 60
11 low 12 low Rules: 11/12 l	good exc (91,67%), de	exc exc termined: 100,0	00% [unacc	::6,acc:1 K	Weights: CAR Attribute PRICE TECH.CHAR. Rounding C gown	0	50 100	Required 50 50 С <u>и</u> р	Current 60 40
11 low 12 low Rules: 11/12	good exc (91,67%), de	exc exc termined: 100,0	00% [unacc	::6,acc:1 K	Weights: CAR Attribute PRICE TECH.CHAR. Rounding Ogown Normalization Sum 100	0	50 100	Required 50 50 © <u>up</u>	Current 60 40

Institut 'Jožef Stefan" Liubliana. Sloveniia

60

40

Handling changes of model structure and components:

- Adding, deleting, moving, connecting attributes and subtrees
- Adding, deleting, moving, joining attribute values

Principles:

- Preserve the available information as much as possible
- Perform operations 'behind the scene' (with due warnings)

Handling changes of model structure and components:

- Adding, deleting, moving, connecting attributes and subtrees
- Adding, deleting, moving, joining attribute values

Example: delete attribute value 'good' of CAR

O R

DEX Method: Model Exploitation

Evaluation of alternatives:

- Bottom-up table lookup
- Principle: Use all available information (even when data or rules are incomplete)
- Handling uncertainty:
 - interval/set values
 - probability distribution
 - fuzzy distributions

Missing data

🚒 DEXi - [CAR [*(Car.dxi]]	
🗦 Eile Edit /	<u>A</u> nalysis <u>W</u> indo	w <u>H</u> elp _ & >
D 🚅 🔒 🗎		
⚠ Model 🔅 O	ptions Σ Evalu	uation Charts
	Ē	🔒 1 🗄 Δ 🔊
Option	Car1	Car2
. CAR	exc	unacc;good;exc
PRICE	low	medium
BUY.PRICE	medium	medium
MAINT.PRICE	low	medium
TECH.CHAR.	exc	bad;good;exc
COMFORT	high	high
#PERS	more	more
#DOORS	4	4
LUGGAGE	big	big
SAFETY	high	*

Scales: 1(

Missing decision table COMFORT

🔆 DEXi - [CAR [*(Car.dxi]]				
👫 Eile Edit /	<u>A</u> nalysis <u>W</u> indo	w <u>H</u> elp _ & ×			
🗅 🚅 🖥 🗎					
🖧 Model 😚 Q	ptions Σ Eva <u>l</u> u	ation Charts			
	Ē	🛍 1 🗄 A 🗠			
Option	Car1	Car2			
. CAR	unacc;exc	*			
PRICE	low	medium			
BUY.PRICE	medium	medium			
MAINT.PRICE	low	medium			
TECH.CHAR.	bad;good;exc	*			
COMFORT	*	*			
#PERS	more	more			
#DOORS	4	4			
LUGGAGE	big	big			
SAFETY	high	*			

Art of Modeling BARCELON Attributes: 10 (6 basic, 0 linked, 4 aggregate)

Attributes: 10 (6 basic, 0 linked, 4 aggregate) | Scales: 1(

DEX Method: Model Exploitation

Analysis of alternatives:

- "What-if analysis"
- "±1 analysis"

OR

- Compare alternatives
- Selective explanation

;	Preview						-	X	
	Page 1/1	<> <> < <mark>100%</mark>	•	ì	Ð	₽ <mark>1</mark>	٩	~	
		DEXi				Car.dx	ci 10.7.1	14	* III
		Comparison of op	tions						
		Attribute	Car1	Car2					
			exc Iow medium	good medium					
		HAINT PRICE TECH.CHAR. COMFORT HPERS HDOORS LUGGAGE	low good high more 4 big	medium					
ĺ		LSAFETY	high	medium					Ŧ

DEX Milestones

 Methodology initial development Software DECMAK "toolbag" First applications HW and SW selection personnel mgmt nursery schools 	 Methodology integration Software DEX Vredana National applications Housing Fund Ministry Sci-Tech Talent System industry medicine Related HINT 	Methodology • further improvement Software • DEXi Education International applications • Sol-Eu-Net • agronomy, GMO • project evaluation • finance Related • model revision, proDEX
DECMAK	DEX	
1980 19	990 20	00 2010

The Art of Modeling BARCELONA 2014 13th-18th July

Evaluation of R&D Projects

- Overall project evaluation
 - Contents evaluation
 - Evaluation of goals
 - Evaluation of objectives
 - Feasibility evaluation
 - Evaluation of external feasibility
 - Evaluation of internal feasibility
- Evaluation of goals
 - Direct benefits
 - Development benefits
 - Mastering of new technologies
 - Ecological impacts
 - Employment impacts
 - Employment generation
 - Impact on employment structure
 - Economic benefits
 - Impact on marketing
 - Opening of new markets
 - Anticipated share of export
 - Impact on decreasing imports
 - Anticipated profit
 - Decrease of energy or raw materials
 - Indirect social benefits
 - Level of social benefits
 - Area of influence
 - Field of influence
 - Impact on restructuring of the economy
 - Importance for state defense
 - Conformity with the development strategy of RS

The Art of Modeling BARCELONA 2014

Medicine: Breast Cancer Risk Assessment

The Art of Modeling BARCELONA 2014

FORS

multi-attribute decision models in health care, International Journal of Medical Informatics 58-59, 191-205, 2000.

"Jožef Stefan"

Ljubljana, Slovenija

Bohanec, M., Messéan, A., Scatasta, S., Angevin, F., Griffiths, B., Krogh, P.H., Žnidaršič, M., Džeroski, S.: A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops. *Ecological Modelling* 215, 247-261, 2008.

The Art of Modeling BARCELONA2014

Contents lists available at SciVerse ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi

Elise Pelzer^{a,b,c,*}, Gabriele Fortino^a, Christian Bockstaller^{d,e}, Frédérique Angevin^a, Claire Lamine^a, Camilla Moonen^f, Vasileios Vasileiadis^g, Daniel Guérin^a, Laurence Guichard^{b,c}, Raymond Reau^{b,c}, Antoine Messéan^a

^a INRA, UAR 1240 Eco-Innov, BP 01, 78850 Thiverval-Grignon, France

- ^b INRA, UMR 211 Agronomie, BP 01, 78850 Thiverval-Grignon, France
- ^c AgroParisTech, UMR 211 Agronomie, BP 01, 78850 Thiverval-Grignon, France
- ^d INRA, UMR 1121, IFR 110, BP 20507, 68021 Colmar, France
- ^e Nancy-Université, UMR 1121, IFR 110, BP 20507, 68021 Colmar, France
- ^f Land Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127 Pisa (PI), Italy
- ^g CNR Institute of Agro-Environmental and Forest Biology, Viale dell'Università 16, 35020 Agripolis, Legnaro (PD), Italy

ARTICLE INFO

Article history: Received 6 May 2011 Received in revised form 14 November 2011 Accepted 14 November 2011

Keywords: Cropping system Integrated pest management Sustainability assessment Ex ante Qualitative Multi-Attribute Decision Models DEXi

ABSTRACT

Modern intensive agriculture has to face the challenge of feeding the world's growing population while reducing its environmental impacts. Assessing in an *ex ante* way the sustainability of innovative cropping systems will increase the efficiency of the innovation process. To this aim, DEXiPM (DEXi Pest Management) has been developed for *ex ante* assessment of the sustainability of arable cropping systems, particularly integrated crop management systems with a limited use of pesticides. It has 75 basic indicators describing the cropping system and the context of the assessment, and 86 aggregated indicators, assessing the usual three dimensions of sustainability in terms of social, environmental and economic issues. DEXiPM was implemented to assess and compare current and innovative winter crop- and maize-based cropping systems for a French region. The evaluation results showed that innovative cropping systems with a limited use of pesticides can have a better overall sustainability, despite the fact that some of the indicators can be negatively impacted. DEXiPM is a relevant tool to evaluate the sustainability of actual cropping systems, to diagnose their strong and weak points and, on this basis, to encourage discussions during the design of innovative cropping systems that will afterwards be tested in fields. The design of DEXiPM is also based on a state of the art on agricultural sustainability which led to point out

I F O R S

Traffic Control Center

Institut "Jožef Stefan"

Ljubljana, Slovenija

driver

O R S

Assessment of Reputation Risk in Banks

FP7 ICT 2010-2013

OR

Large scale information extraction and integration infrastructure for supporting financial decision making

Bohanec, M., Aprile, G., Costante, M., Foti, M., Trdin, N.: A hierarchical multi-attribute model for bank reputational risk assessment. *DSS 2.0 - Supporting Decision Making with New Technologies* (eds. Phillips-Wren, G., et al.), Amsterdam: IOS Press, 92-103, 2014.

The Art of Modeling BARCELONA 2014

DEX: Experience

- Suitable problems:
 - sorting/classification problems
 - difficult problems (many attributes and/or many alternatives)
 - problems that require human judgment, analysis, justification and explanation
 - problems with prevailing qualitative (rather than quantitative) indicators
 - finding solutions requires expert knowledge (decision rules)
 - uncertainty (incomplete knowledge, imprecise or missing data)
- Characteristics:
 - relatively simple and fast development of models
 - qualitative models are less precise/discriminative than quantitative
 - thus less suitable for choosing and ranking
- Trend: from decision to evaluation systems

Summary

- DEX:
 - Multi-Attribute decision modeling methodology
 - A pioneering approach, combining multi-criteria decision modeling with rule-based expert systems
- Contributions:
 - Scientific, technical and practical
 - Three generations of software: DECMAK, DEX, DEXi
 - Hundreds of real-life applications
- Status:
 - 30+ years old, but alive: internationally recognized, actively used in new projects, taught in schools, still developing
- Future:
 - DEXi software: maintenance
 - Development of new, extended, more powerful methodology
 - Implementation on new architectures (software library; java, Web, mobile)

Thank you for your attention

