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Abstract. The most common machine learning approach is supervised
learning, which uses labeled data for building predictive models. How-
ever, in many practical problems, the availability of annotated data is
limited due to the expensive, tedious and time-consuming annotation
procedure. At the same, unlabeled data can be easily available in large
amounts. This is especially pronounced for predictive modelling problems
with structured output space. Semi-supervised learning (SSL) aims to use
unlabeled data as an additional source of information in order to build
better predictive models than can be learned from labeled data alone.
The majority of work in SSL considers the simple tasks of classification
and regression where the output space consists of a single variable. Much
less work has been done on SSL for structured output prediction. In this
study, we address the task of multi-target regression (MTR), a type of
structured output where the output space consists of multiple numerical
values. Our main objective is to investigate whether we can improve over
supervised methods for MTR by using unlabeled data. We use ensembles
of predictive clustering trees in a self-training fashion: most reliable pre-
dictions on unlabeled data are iteratively used to re-train the model. We
use variance of an ensemble models as an indicator of the reliability of
predictions. Our results provide a proof-of-concept: Unlabeled data im-
proves predictive performance of ensembles for multi-target regression,
however further efforts are needed to automatically select the optimal
threshold for reliability of predictions.

Keywords: semi-supervised learning, self-training, multi-target, multi-
output, multivariate, regression, ensembles, structured outputs, PCTs

1 Introduction

The major machine learning paradigms are supervised learning (e.g., classifica-
tion, regression), where all the data are labeled, and unsupervised learning (e.g.,
clustering) where all the data are unlabeled. Semi-supervised learning (SSL) [1]
examines how to combine both paradigms and exploit both labeled and un-
labeled data, aiming to benefit from the information that unlabeled data can
bring. SSL is of important practical value since the following scenario can often
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be encountered: labeled data are scarce and hard to get because they require
human experts, expensive devices or time-consuming experiments, while, at the
same time, unlabeled data abound and are easily obtainable. Real-world clas-
sification problems of this type include: phonetic annotation of human speech,
protein 3D structure prediction, and spam filtering. Intuitively, SSL yields best
results when there are few labeled examples as compared to unlabeled ones (i.e.,
large-scale labelling is not affordable). Such a scenario is in particular relevant
for machine learning tasks with complex (structured) outputs, where providing
the labels of data is a laborious and/or an expensive process, while at the same
time large amounts of unlabeled data are readily available.

In this study, we are concerned with the semi-supervised learning for multi-
target regression (MTR). MTR is a type of structured output prediction task
where the goal is to predict multiple continuous target variables (also known
as multi-output or multivariate regression). In many real life problems, we are
interested in simultaneously predicting multiple continuous variables. Prominent
examples come from ecology: predicting abundance of different species living
in the same habitat [2], or predicting properties of forest [3]. There are several
advantages of learning a multi-target (i.e., global) model over learning a separate
(i.e., local) model for each target variable: Global models are typically easier to
interpret, perform better and overfit less than collection of single-target models
[4]. In the past, classical (single-target) regression received much more attention
than MTR, however several researchers proposed methods for solving the task
of MTR directly and demonstrated their effectiveness [5-8].

Semi-supervised methods able to solve MTR problems are scarce. Most com-
monly, SSL methods for structured output prediction are dealing with discrete
outputs. Here, prominent work was done by Brefeld [9], who used co-training
paradigm and the principle of maximizing the consensus among multiple in-
dependent hypotheses to develop semi-supervised support vector learning algo-
rithm for joint input-output spaces and arbitrary loss. Zhang and Yeung [10]
proposed a semi-supervised method based on Gaussian processes for a task re-
lated to MTR: multi-task regression. In multi-task learning the aim is to predict
multiple single-target variables with different training sets (in general, with dif-
ferent descriptive attributes) at the same time. Also related, Navaratnam et al.
[11] proposed a semi-supervised method for multivariate regression specialized
for computer vision. The goal is to relate features of images (z) to joint angles
(9). Unlabeled examples are used to help the fitting of the joint density p(z, ).

In this work, we propose a self-training approach [12] (also called self-teaching
or bootstrapping) for performing SSL for MTR. As a base predictive model,
we use predictive clustering trees (PCTs), or more precisely, random forest of
predictive clustering trees for MTR [8]. PCTs are a generalization of standard
decision trees towards predicting structured outputs. They are able to make pre-
dictions for several types of structured outputs [8]: tuples of continuous/discrete
variables, hierarchies of classes and time series.

The main feature of self-training is that it iteratively uses its own most
reliable predictions in the learning process. The most reliable predictions are
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selected by using a threshold on the reliability scores. The main advantage of the
iterative semi-supervised learning approach is that it can be “wrapped” around
any existing (supervised) method. The only prerequisite is that the underlying
method is able to provide a reliability score for its predictions. With our base
predictive models, i.e., random forest of PCTs for MTR, this score is estimated
by using the variance of the votes from the ensemble members of an example.

The concept of self-training was first proposed by Yarowsky [13] for word
sense disambiguation, i.e., deciding the meaning of a homonym in a given con-
text. Other successful applications of self training include: detection of objects
on image [14], identification of subjective nouns [15] and learning human motion
over time [16]. There are several examples of methods based on self-training (or
based on closely related co-training) implemented for solving the task of (single-
target) regression [17-21]. To the best of our knowledge, self-training was not
implemented yet for the problem of multi-target regression.

The main purpose of this study is to investigate the following question: Can
unlabeled data improve predictive performance of the models for MTR in a self-
training setting? To this end, we compared our semi-supervised method to its
supervised counterpart in the following evaluation scenario: We consider the best
result (considering different thresholds for reliability score) of semi-supervised
method. Results show that the proposed semi-supervised method is able to im-
prove over supervised random forest in 4 out of 6 considered datasets. Thus, the
evaluation provides a positive answer to our research question posed above, and
motivates further research efforts in this direction.

2 Semi-supervised learning with ensembles of PCT's

The basis of the semi-supervised method proposed in this study is the use,
in an ensemble learning fashion, of predictive clustering trees (PCTs). In this
section, we first briefly describe PCTs for multi-target regression, followed by
a description of the method for learning random forest. We then present in
details the adaptation of semi-supervised self-training approach for multi-target
regression with random forest of PCTs.

2.1 Predictive clustering trees for MTR

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters: the top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [22], which is available for
download at http://clus.sourceforge.net.

PCTs are induced with a standard top-down induction of decision trees
(TDIDT) algorithm [23] (see Table 1). It takes as input a set of examples (E)
and outputs a tree. The heuristic (h) that is used for selecting the tests (¢) is
the reduction in variance caused by the partitioning (P) of the instances corre-
sponding to the tests (¢) (see line 4 of the BestTest procedure in Table 1). By
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Table 1. The top-down induction algorithm for PCTs.

procedure PCT procedure BestTest
Input: A dataset F Input: A dataset F
Output: A predictive clustering Output: the best test (¢*), its heuristic
tree score (h*) and the partition (P*) it induces
1: (t*,h",P*) = BestTest(F) on the dataset (E)
2: if t* # none then 1: (t*,h",P") = (none,0,0)
3: for each E; € P* do 2: for each possible test ¢t do
4: tree; = PCT(E;) 3 P = partition induced by t on E
5 return 4 h = Var(E) — ZEieP % Var(E;)
node(t*, J,{tree:}) 5: if (h > h*) A Acceptable(t, P) then
6: else 6: ", ", P*)=(t,h,P)
T return leaf(Prototype(£)) 7: return (t*,h*,P*)

maximizing the variance reduction, the cluster homogeneity is maximized and
the predictive performance is improved.

The main difference between the algorithm for learning PCTs and a standard
decision tree learner is that the former considers the variance function and the
prototype function (that computes a label for each leaf) as parameters that can
be instantiated for a given learning task. So far, PCTs have been instantiated
for the following tasks [8]: multi-target prediction (which includes multi-target
regression), hierarchical multi-label classification and prediction of time-series.
In this article, we focus on the task of multi-target regression (MTR).

The variance and prototype functions of PCTs for MTR are instantiated as
follows. The variance (used in line 4 of the procedure BestTest in Table 1) is
calculated as the sum of the variances of the target variables, i.e., Var(E) =
Zz;l Var(Y;), where T is the number of target variables, and Var(Y;) is the
variance of target variable Y;. The variances of the targets are normalized, so
each target contributes equally to the overall variance. The normalization is
performed by dividing with the estimates with the standard deviation for each
target variable on the available training set. The prototype function (calculated
at each leaf) returns as a prediction the mean values of the target variables,
calculated by using the training instances that belong to the given leaf.

2.2 Ensembles of PCTs

We consider random forest of PCTs for structured prediction, as suggested by
Kocev et al. [8] in the CLUS system. The PCTs in the random forest are con-
structed by using the random forests method given by Breiman [24]. The algo-
rithm of this ensemble learning method is presented in Table 2, left.

A random forest (Table 2, left) is an ensemble of trees, where diversity among
the predictors is obtained by using bootstrap replicates and additionally by
changing the set of descriptive attributes during learning. Bootstrap samples
are obtained by randomly sampling training instances, with replacement, from
the original training set, until an equal number of instances as in the training
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Table 2. The learning algorithms for random forests and semi-supervised self-training
(CLUS-SSL). Here, E; is the set of the labeled training examples, E,, is a set of unla-
beled examples, k is the number of trees in the forest, f(D) is the size of the feature
subset considered at each node during tree construction for random forests and 7 is
the threshold for reliability of predictions.

procedure RForest(E;, k, f(D)) procedure CLUS-SSL(E;, E., 7,k (D))
returns Forest returns Forest
1. F=90 1: repeat

2: fori=1to k do 2: F = RForest(Ey, k, f(D))
3: E; = bootstrap(Ey) 3 predict(F, E.,)
4: T; = PCT_rnd(E;, f(D)) 4 for each e, € E, do
5 F = F{T:} 5: if Reliability(F,e,) > 7 then
6: return F 6: move e, from E, to E;
7: until No example e, is moved from F,,

to Ej

set is obtained. Breiman [25] showed that bagging can give substantial gains in
predictive performance, when applied to an unstable learner (i.e., a learner for
which small changes in the training set result in large changes in the predictions),
such as classification and regression tree learners.

To learn a random forest, the classical PCT algorithm for tree construction
(Table 1) is replaced by PCT _rnd which replaces the standard selection of at-
tributes with a randomized selection. More precisely, at each node in the decision
trees, a random subset of the descriptive attributes is taken, and the best at-
tribute is selected from this subset. The number of attributes that are retained
is given by a function f of the total number of descriptive attributes D (e.g.,
f(D) =1, f(D) = |V/D+1], f(D) = |loga(D)+1] ...). The reason for random
selection of attributes is to avoid (possible) correlation of the trees in a boot-
strap sample. Namely, if only few of the descriptive attributes are important for
prediction of target variables, these will be selected by many of the bootstrap
tress, generating highly correlated trees.

In the random forest of PCTs, the prediction for a new instance is obtained
by combining the predictions of all the base predictive models. For the MTR
task, the predictions for each target variable is computed as the average of the
predictions obtained from each tree.

2.3 Self-training for MTR

To perform semi-supervised learning with ensembles of PCTs for MTR, we con-
sider a self-training approach. In self-training, first a predictive model (i.e., a
random forest of PCTs) is constructed by using the available labeled instances.
The unlabeled instances are then labeled by using the obtained predictive model.
Next, the examples with the most reliable predictions are selected and then
added to the training set. A predictive model is again constructed and the pro-
cedure is repeated until a stopping criterion is satisfied.
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To adapt the self-training procedure to the MTR task, we need to define:
i) a reliability measure of the predictions, i) a criterion to select the most
reliable predictions and #i4) a stopping criterion. Since self-training relies on the
assumptions that its own (most reliable) predictions are correct, the most crucial
part of the algorithm is the definition of a good reliability measure. This measure
should be able to discern correct (with high reliability score) from wrong (with
low reliability score) predictions. At this purpose, we exploit a solution provided
directly with the ensemble learning — we use the variance of the votes of an
ensemble as an indicator of reliability.

When an unlabeled example is predicted by a random forest, we consider the
prediction reliable if predictions of individual trees (i.e., votes) in the ensemble
are coherent. Otherwise, if the predictions by individual trees in the ensemble are
very heterogeneous, we consider the prediction unreliable. The variance has been
previously used in bagging where it has been found to perform the best in an
extensive empirical comparison of various approaches for estimating reliability
of regression predictions [26].

Here we present the procedure for calculation of reliability score in more
detail. Formally, for each iteration of the self-training algorithm, we have to solve
an MTR problem with m continuous target variables by learning a random forest
ensemble F' with k trees. These trees are trained on a set of labeled examples £
and applied on a set of unlabeled examples F,,. First, for each unlabeled example
ey € E,, per-target standard deviation of votes of ensemble r?, is calculated as:

k
ri = %Z(?ﬁreeaé(ezu)—Fi(eu))Q7 i=1...m,

j=1

where treef is a vote (i.e., a prediction score) for e, returned by the j* tree for
the it target. F? is the prediction for e, returned by the ensemble for the it?
target (i.e., the average of the votes of each tree).

In order to equally weight the contribution of each target attribute in the
reliability of the prediction obtained for each unlabeled example, we normalize
per-target standard deviations in the interval [0, 1] as follows:

Ti — min 7}

j=1...|B,| ’

o= - - -, t=1...m.
max 7;— min 71’

j=1...|E| 7 j=1..|E|

After normalization, the reliability score for an example e, can be computed by
considering the average of the normalized per-target standard deviations:

o LS
Reliability(F,e,) =1 — m ; (ru)

In this formula we have that, a small standard deviation leads to a high score
(high reliability).
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Table 3. Characteristics of the datasets. N: number of instances, D/C: number of
descriptive attributes (discrete/continuous), 7": number of target variables.

Dataset N D/C T
Forestry LIDAR IRS [27] 2731 0/29 2
Sigmea real [28] 817 0/4 2
Soil quality [2] 1944 0/142 3
Solar flare-2 [29] 1066 10/0 3
Vegetation clustering [30] 29679 0/65 11
Water quality [31] 1060 0/16 14

The self-training algorithm for MTR with ensembles of PCTs (named CLUS-
SSL) is presented in Table 2 (right). To choose which unlabeled examples should
be added to the training set we use a user-defined threshold for the reliability
score: 7 € [0,1]. If the reliability of the prediction of an unlabeled example is
greater than 7, the example is moved from the unlabeled set (E,) to the training
set (Ej), together with its multi-target predictions. The iterations are repeated
until no unlabeled example is moved from the set E, to the set E;. This can
happen for two reasons, either the set E,, becomes empty, or the reliability score
for all the unlabeled examples is smaller than 7.

It is noteworthy that, the combination of random forest and self-training
can be considered as a variant of the co-training learning schema where, at
each iteration, we do not keep the same views used in the previous iteration
and independence among the views is (partially) guaranteed by the ensemble
learning approach. This guarantees that the semi-supervised approach can still
improve prediction even if, at each iteration, it considers the same features.

3 Experimental design

The semi-supervised method for MTR, proposed in this study (CLUS-SSL) it-
eratively trains random forest tree ensemble for MTR. Thus, we compare the
predictive performance of the CLUS-SSL to the performance of a supervised ran-
dom forest, which is considered as baseline for comparison. The exact evaluation
procedure is presented in more details in the remainder of this section.

3.1 Data description

To evaluate the predictive performance of the methods, we use six dataset with
multiple continuous target variables. The selected datasets are mainly from the
domain of ecological modelling. The main characteristics of the datasets are
provided in Table 3. We can observe that the datasets vary in the size, number
of attributes and number of target variables.



8 J. Levatié et al.

3.2 Experimental setup and evaluation procedure

Random forests used in the experimental evaluation were constructed with 100
trees. Trees were not pruned and the number of random features used in random
forest was set to [logy(D) + 1|, where D is the total number of features, as
recommended by Breiman [24].

To evaluate the predictive performance of the models, we use a procedure
similar to 5-fold cross validation, with the difference that the training folds are
further partitioned into labeled and unlabeled. More specifically, the data are
first randomly divided into 5 folds. Each fold is used once as a test set, and the
remaining four folds are used for training. From the training folds, we randomly
chose a percentage of the data which serve as labeled examples. We remove the
labels of other examples and provide them to the algorithm to serve as unlabeled
data during training. Supervised random forests were trained only on the labeled
part of the data. The predictive performance reported in the results is the average
obtained on the 5 test sets.

To investigate the influence of the amount of labeled data, for each dataset
we vary the ratio of labeled versus unlabeled data, where percentage of labeled
relative to unlabeled data ranges in the following set: [1%, 3%, 5%, 7%, 10%,
15%, 20%, 30%, 50%].

For the CLUS-SSL algorithm, we need to set the threshold 7 for the reliability
score, which is used throughout the iterations. For each percentage of labeled
data, we tested 15 different thresholds:

7 =4{0.1,0.2,0.3,0.4,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,0.99} .

Therefore, 15 predictive models were built (one model corresponding to one
threshold) for each percentage of labeled data. Among these, we report the
predictive performance of the best model.

We evaluate the algorithms by using the root mean square error (RMSE):

m N
RMSE = | 1/(N+m)*>_ 3" (a% —pt)”,

i=1 j=1

where m is the number of target variables, N is the number of examples, a;'- is

the real value of the i*" target of the j'" example, and p§ is the predicted value
of the i*" target of the j*"* example.

In order to make results comparable across different percentages of labeled
examples, we opted to use an evaluation procedure where the test sets are con-
sistent for all the settings. In the results reported in this paper, we consider
that the optimal threshold is provided by an ‘oracle’. Such threshold selection
procedure suffices for answering the research question investigated in this work:
Can unlabeled data potentially improve the predictive performance of models for
MTR? A more general solution for selecting the threshold, would be to use
a cross-validation procedure or by implementing smarter thresholding system
in self-training which tries to automatically detect the optimal threshold. This
aspect is left as future work.
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Fig. 1. Comparison of predictive performance of random forest (CLUS-RF) and semi-
supervised self-training (CLUS-SSL). Percentage of labeled data varies from 1% to
50%. For each pertentage of labeled data, the best result for CLUS-SSL is presented,
considering the different thresholds for confidence of predictions. Optimal threshold
is indicated on the plot. CLUS-SSL performs very similar to CLUS-RF (a and c) or
improves over CLUS-RF (b, d, e and f).

4 Results and discussion

The results of the experimental evaluation are presented in Figure 1. Their anal-
ysis reveals that the proposed semi-supervised method (CLUS-SSL) outperforms
its supervised counterpart (CLUS-RF) on 4 out of 6 datasets: Sigmea real, So-
lar flare-2, Water quality and Vegetation clustering. On the other two datasets
(Forestry LIDAR IRS and Soil quality), the two methods perform very similar,
with small improvements or degradations in performance made by CLUS-SSL.
It was noted before that the success of SSL is domain depended, i.e., methods
can behave very differently depending on the nature of the datasets, and that no
single SSL method consistently performs better than supervised learning [32].
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Table 4. Optimal threshold for reliability of predictions (7), the percentage of un-
labeled examples added to the training set after the completion of the self-training
procedure (£) and the number of iterations performed (Z) of the CLUS-SSL method.

Percentage of labeled data

Dataset o g0t 500 7% 10%  15%  20%  30%  50%
Forestry |7]0.99 0.99 0.9 099 095 0.95 0.9 0.95 0.95
LIDAR || 0% 0% 28% 0% 5% 3% 26% 3% 2%

IRS 7l 1 1 80.8 1 26.4 18 57.4 14 8.2
Sigmea 71 0.4 0.85 0.6 0.95 0.85 0.55 0.7 0.8 0.65

real £1100% 100% 100% 100% 100% 100% 100% 99% 100%

7| 6.8 9.8 7 16 8.8 6.4 8 5.6 5.2

Soil 71 0.9 0.95 0.7 0.9 099 0.95 0.9 0.99 0.95

quality &l 4% 1% 95% 26% 0% 2% 34% 0% 4%
7| 3.8 2.6 8.8 15 1 2.4 11 1 5.2

Solar 7| 0.9 0.7 0.8 0.55 0.65 0.75 0.75 0.55 0.9

flare-2 £199% 98% 91% 100% 100% 97% 96% 100% 83%
7| 15.2 5 11 4 5.4 9 7 4.4 9.2
Vegetation 7| 0.1 0.5 0.4 095 0.9 0.85 0.9 0.9 0.95
clustering £1100% 100% 100% 0% 1% 7% 2% 2% 0%
7l 2 7.4 4.6 1.2 32.8 82.6 43.6 52.4 7.2

Water 71 0.3 0.65 0.65 0.5 0.4 0.65 0.5 0.4 0.55

quality £1100% 100% 100% 100% 100% 99% 100% 100% 99%
7| 3.2 36.2 322 8 3.8 29.8 8.2 4.2 16.8

Results reported in this paper are, thus, consistent with results obtained in pre-
vious research on tasks which are different from MTR.

The analysis of the results by varying the percentage of labeled data shows
that, as expected, RMSE error decreases with the increase of the percentage of la-
beled data used to construct the predictive model (better models are learned with
more data). However, these trends are not observed across all of the datasets.
We can observe the saturation in performance for Sigmea real and Solar flare-2
datasets. There, from about 5% to 7% percent of labeled data, both meth-
ods (CLUS-SSL and CLUS-RF) were not able to improve much in the abso-
lute terms. In spite of that, CLUS-SSL is consistently performing better than
CLUS-RF, meaning that even in situations where supervised models reached
saturation, unlabeled data can further boost the performance. On the other two
datasets where unlabeled data helps (Vegetation clustering and Water quality),
the improvements of CLUS-SSL over CLUS-RF are more notable with smaller
percentages of labeled data. Such behavior is expected, since SSL has the best
potential when not much labeled examples are available.

In Table 4, the specific conditions used to obtain and evaluate the CLUS-SSL
models (whose performances are depicted in Fig. 1) are given. When observing
the variability of the optimal thresholds for the reliability score, we cannot de-
tect regularities. They vary greatly from one dataset to another, and from one
percentage of labeled data to another, meaning that it is hard to tell in advance



SSL for multi-target regression 11

( —A— Targetl
0.03 R —©— Target2
\ — Target3

T
5 7 10 15 20 30
Percentage Labeled

Fig. 2. Analysis of per target performance for the Solar flare-2 dataset, in terms of
difference in performance between CLUS-RF and CLUS-SSL (ARMSE). Positive values
suggest that CLUS-SSL is better, while negative that CLUS-RF is better. Zero means
that there is no difference in performance.

which threshold should be used. Self-training can also degrade performance of
the underlying method if a sub-optimal threshold is chosen. In particular, if a
too permissive threshold is selected, it can allow wrongly predicted examples to
enter in the training set. A classification error in the earliest iterations can rein-
force itself in the next iterations, leading to a degradation of the performance.
On the other hand, if a too stringent threshold is set, it is possible that none,
or very few, of the unlabeled examples will enter the training set, meaning that
we will miss the opportunity to improve performance with unlabeled data.

Similar observation can be made for the number of performed self-training
iterations, they are very heterogeneous regarding the different datasets and per-
centages of labeled data. Analysis of the number of unlabeled examples added to
the training set reveals that, in the cases where semi-supervised learning helps,
almost all of the unlabeled examples were moved to the training set at the end of
the self-training procedure. This is very consistent across datasets where CLUS-
SSL improves over CLUS-RF: Sigmea real, Solar flare-2, Vegetation clustering
(for the cases with 1 to 5% percent of labeled data) and Water Quality. The
fundamental assumption of self-training is that its most reliable predictions are
correct. Thus, the success of this method depends on the ability to learn an
accurate model from the data at hand. The assumption is apparently met on
the former four cases. Moreover, the (good) predictive ability of the models was
retained throughout iterations, as all unlabeled examples were eventually added
to the training set. Contrary, if CLUS-SSL was not able to improve over CLUS-
RF, then generally very few, or none of the unlabeled examples were added to
the training set. This is the case at Forestry LIDAR IRS, Soil Quality and Veg-
etation Clustering (for more than 5% of labeled data) datasets. The predictive
models learnt from these datasets are most probably prone to errors and the
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self-training approach would only lead to a propagation of the errors (this is
confirmed by the optimal threshold for reliability close to 1).

A different perspective of the results is provided in Figure 2, where per-target
RMSE improvements over the baseline are shown. As it is possible to see, these
results show that the improvement provided by the semi-supervised setting is not
uniform over the different targets. This means that for some target attributes,
there is still a large margin for improvement with respect to accuracy reached
by the random forest approach.

5 Conclusions and further work

Semi-supervised learning is an intriguing research area because of potential gains
in performance for ‘free’ — labeling of the data is expensive and laborious, while
freely available unlabeled data can be used to enhance the performance of tra-
ditional, supervised, machine learning methods. Such proposition is even more
relevant for learning problems with structured outputs, where labeling of the
data is even more expensive and problematic.

We address the task of semi-supervised learning for multi-target regression —
a type of structured output, where the goal is to simultaneously predict multiple
continuous variables. To the best of our knowledge, semi-supervised methods
dealing with this task do not exist thus far. We propose a self-training approach
to semi-supervised learning by using a random forest of predictive clustering
trees for multi-target regression. In the proposed approach, a model uses its own
most reliable predictions in an iterative fashion.

Due to its relative simplicity and intuitiveness, self-training can be considered
as a baseline semi-supervised approach, i.e., a starting point for investigation of
the influence of unlabeled data. In this study, we wanted to investigate whether
unlabeled data can improve predictive performance of the models for MTR, in
a self-training setting. The results of the experimental evaluation show that the
proposed method outperforms its supervised counterpart on 4 out of 6 datasets.
These are encouraging results and prompt further investigation.

In future, we plan to extend this work along several directions. First, we
plan to implement an intelligent threshold selection procedure. Namely, here
we consider a relatively simple implementation of self-training (with respect to
the thresholding system and the stopping criteria), but there are several pos-
sibilities to implement more sophisticated variants of it. For instance, so-called
"airbag’ stopping criteria [33] can detect degradation in performance and stop
self-training. Alternatively, we can utilize ’out-of-bag properties’ of the random
forest to automatically detect the optimal threshold for the reliability score. Sec-
ond, success of the reliability estimate of regression predictions can vary depend-
ing on the domain or the regression model used. The most appropriate estimates
can be automatically detected [34] and used during self-training. Third, mod-
ularity of predictive clustering trees enables easy extension of the self-training
approach to the other types of structured outputs, such as multi-target classifi-
cation or time-series prediction.
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