
Pattern Recognition 46 (2013) 817–833
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

E-m

Celine.V

Saso.Dz
journal homepage: www.elsevier.com/locate/pr
Tree ensembles for predicting structured outputs
Dragi Kocev a,n, Celine Vens b, Jan Struyf b, Sašo Džeroski a,c,d

a Department of Knowledge Technologies, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
b Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
c International Postgraduate School Jožef Stefan, Jamova Cesta 39, 1000 Ljubljana, Slovenia
d Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova Cesta 39, 1000 Ljubljana, Slovenia
a r t i c l e i n f o

Article history:

Received 14 May 2012

Received in revised form

26 September 2012

Accepted 30 September 2012
Available online 11 October 2012

Keywords:

Ensemble methods

Predictive clustering trees

Structured outputs

Multi-target regression

Multi-target classification

Hierarchical multi-label classification
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.09.023

esponding author. Tel.: þ386 1 477 3639; fax

ail addresses: Dragi.Kocev@ijs.si (D. Kocev),

ens@cs.kuleuven.be (C. Vens), Jan.Struyf@cs.k

eroski@ijs.si (S. Džeroski).
a b s t r a c t

In this paper, we address the task of learning models for predicting structured outputs. We consider both

global and local predictions of structured outputs, the former based on a single model that predicts the

entire output structure and the latter based on a collection of models, each predicting a component of the

output structure. We use ensemble methods and apply them in the context of predicting structured

outputs. We propose to build ensemble models consisting of predictive clustering trees, which generalize

classification trees: these have been used for predicting different types of structured outputs, both locally

and globally. More specifically, we develop methods for learning two types of ensembles (bagging and

random forests) of predictive clustering trees for global and local predictions of different types of structured

outputs. The types of outputs considered correspond to different predictive modeling tasks: multi-target

regression, multi-target classification, and hierarchical multi-label classification. Each of the combinations

can be applied both in the context of global prediction (producing a single ensemble) or local prediction

(producing a collection of ensembles). We conduct an extensive experimental evaluation across a range of

benchmark datasets for each of the three types of structured outputs. We compare ensembles for global

and local prediction, as well as single trees for global prediction and tree collections for local prediction,

both in terms of predictive performance and in terms of efficiency (running times and model complexity).

The results show that both global and local tree ensembles perform better than the single model

counterparts in terms of predictive power. Global and local tree ensembles perform equally well, with

global ensembles being more efficient and producing smaller models, as well as needing fewer trees in the

ensemble to achieve the maximal performance.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Supervised learning is one of the most widely researched and
investigated areas of machine learning. The goal in supervised
learning is to learn, from a set of examples with known class, a
function that outputs a prediction for the class of a previously unseen
example. If the examples belong to two classes (e.g., the example has
some property or not) the task is called binary classification. The task
where the examples can belong to a single class from a given set of m

classes (mZ3) is known as multi-class classification. The case where
the output is a real value is called regression.

However, in many real life problems of predictive modeling the
output (i.e., the target) is structured, meaning that there can be
dependencies between classes (e.g., classes are organized into a tree-
shaped hierarchy or a directed acyclic graph) or some internal
relations between the classes (e.g., sequences). These types of
ll rights reserved.

: þ386 1 477 3315.

uleuven.be (J. Struyf),
problems occur in domains such as life sciences (predicting gene
function, finding the most important genes for a given disease,
predicting toxicity of molecules, etc.), ecology (analysis of remotely
sensed data, habitat modeling), multimedia (annotation and retrie-
val of images and videos) and the semantic web (categorization and
analysis of text and web pages). Having in mind the needs of these
application domains and the increasing quantities of structured
data, Yang and Wu [1] and Kriegel et al. [2] listed the task of ‘‘mining
complex knowledge from complex data’’ as one of the most
challenging problems in machine learning.

A variety of methods, specialized in predicting a given type of
structured output (e.g., a hierarchy of classes [3]), have been
proposed [4]. These methods can be categorized into two groups
of methods for solving the problem of predicting structured
outputs [4,3]: (1) local methods that predict component(s) of
the output and then combine the individual models to get the
overall model and (2) global methods that predict the complete
structure as a whole (also known as ‘big-bang’ approaches). The
global methods have several advantages over the local methods.
First, they exploit and use the dependencies that exist between
the components of the structured output in the model learning

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2012.09.023
dx.doi.org/10.1016/j.patcog.2012.09.023
dx.doi.org/10.1016/j.patcog.2012.09.023
mailto:Dragi.Kocev@ijs.si
mailto:Celine.Vens@cs.kuleuven.be
mailto:Jan.Struyf@cs.kuleuven.be
mailto:Saso.Dzeroski@ijs.si
dx.doi.org/10.1016/j.patcog.2012.09.023

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833818
phase, which can result in better predictive performance. Next,
they are typically more efficient: it can easily happen that the
number of components in the output is very large (e.g., hierar-
chies in functional genomics can have several thousands of
components), in which case executing a basic method for each
component is not feasible. Furthermore, they produce models
that are typically smaller than the sum of the sizes of the models
built for each of the components.

The predictive models that we consider in this paper are
predictive clustering trees (PCTs). PCTs belong to the group of
global methods. PCTs offer a unifying approach for dealing with
different types of structured outputs and construct the predictive
models very efficiently. They are able to make predictions for
several types of structured outputs: tuples of continuous/discrete
variables, hierarchies of classes, and time series. More details
about the PCT framework can be found in [5–9].

PCTs can be considered as a generalization of standard decision
trees towards predicting structured outputs. Although they offer
easily interpretable trees with good predictive performance, they
inherit the stability issues of decision trees [10]. Namely, change in
just a few training examples can sometimes drastically change the
structure of the tree. Breiman [11] states that un-stable predictive
models (such as decision trees) could be combined into an ensemble
to improve their predictive performance. An ensemble is a set of
(base) predictive models, whose output is combined. For basic
classification and regression tasks, it is widely accepted that an
ensemble lifts the predictive performance of its base predictive
models [12]. However, for the task of predicting structured outputs,
this issue has not been thoroughly investigated. Moreover, in the case
where the base predictive models are decision trees, Bauer and
Kohavi [13] conclude that the ensemble’s increase in performance
is stronger if the trees are unpruned, i.e., allowed to overfit. On the
other hand, Blockeel et al. [14] state that PCTs for structured outputs
show less overfitting than the trees for classification of a single target
variable. Having in mind these two conflicting influences, it is not
obvious whether an ensemble of predictive clustering trees can
significantly increase the predictive performance over that of a single
predictive clustering tree.

Furthermore, in an ensemble learning setting, it is not clear if
the predictive performance of an ensemble of global predictive
models will be better or worse than the predictive performance
of a combination of ensembles of local predictive models.
Generally, an ensemble is known to perform better than its base
learner if the base learner is accurate and diverse [15]. While
the superior predictive performance of global models has been
shown before [8], less is known about their diversity or instability
(i.e., whether they produce different errors with small changes
to the training data). It is expected that a PCT for predicting
structured outputs, especially in the case of hierarchical classifica-
tion, is less unstable than a PCT for predicting components of the
output. It is also not clear which approach will be more efficient,
both in terms of running time and size of the predictive models.

In this paper, we investigate the aforementioned questions.
We use bagging and random forests as ensemble learning meth-
ods, since they are the two most widely used ensemble learning
methods in the context of decision trees [16]. We consider two
structured output machine learning tasks: predicting multiple
target variables and hierarchical multi-label classification. We
perform an extensive empirical evaluation of the proposed
methods over a variety of benchmark datasets.

The paper is based on our previous work by Kocev et al. [7] and
Schietgat et al. [17]. Kocev et al. [7] conducted an initial compar-
ison of different ensemble schemes using predictive clustering
trees in the context of predicting multiple targets. Schietgat et al.
[17] introduced bagging of PCTs for hierarchical multi-label
classification (HMC) in the context of functional genomics.
The present paper extends the previous work [7,17] in the
following directions:
�
 The tasks of predicting multiple target variables and hierarch-
ical multi-label classification are discussed jointly. Formal
definitions of the considered tasks are provided, as well as
an extensive discussion of the related work.

�
 The experimental evaluation is performed on a much wider

selection of datasets, from various domains. The performance
of ensembles with different number of base predictive models
is evaluated and saturation curves are provided.

�
 A better methodology for performance comparisons is used

and a more detailed discussion of the results is presented.
Friedman tests combined with a Nemenyi post hoc test are
used to compare different ensemble schemes, instead of
performing pairwise comparisons.

�
 Global random forests of PCTs for HMC are introduced and

evaluated. Local ensembles (both bagging and random forests)
of PCTs for HMC are introduced and evaluated.

�
 A computational complexity analysis of the proposed methods

is performed, which is consistent with the empirical evidence.
Global tree ensembles are most efficient, especially random
forests, and are scalable to large datasets.

The remainder of this paper is organized as follows. In Section 2,
the considered machine learning tasks are formally defined. Section 3
first explains the predictive clustering trees framework and the
extensions for predicting multiple targets and hierarchical multi-
label classification. It then describes the ensemble methods and
their extension for predicting structured outputs. The design of
the experiments, the descriptions of the datasets, the evaluation
measures and the parameter settings for the algorithms are given in
Section 4. Section 5 presents and discusses the obtained results. The
related work is presented in Section 6. Finally, the conclusions are
stated in Section 7.
2. Machine learning tasks

The work presented in this paper concerns the learning of
ensembles for predicting structured outputs. First, we formally
describe the machine learning tasks that we consider here: predicting
multiple targets and hierarchical multi-label classification. We follow
the suggestions by Džeroski et al. [18] and Džeroski [86], where
predictive modeling is defined for arbitrary types of input and output
data. In particular, we describe the tasks of predicting multiple targets
and hierarchical multi-label classification.

2.1. Predicting multiple targets

The task of predicting multiple targets was previously referred
to as multi-objective prediction [6,7,19]. However, the term
‘multi-objective’ is already established in the area of optimization.
We will thus use the term ‘predicting multiple targets’ or multi-
target prediction (resp. multi-target classification and regression).
We define the task of predicting multiple targets as follows.

Given:
�
 A description space X that consists of tuples of values of primi-
tive data types (discrete or continuous), i.e., 8XiAX, Xi ¼

ðxi1 ,xi2 , . . . ,xiD Þ, where D is the size of the tuple (or number of
descriptive variables),

�
 A target space Y which consists of a tuple of several variables

that can be either continuous or discrete, i.e., 8YiA
Y ,Yi ¼ ðyi1

,yi2
, . . . ,yiT Þ, where T is the size of the tuple (i.e.,

number of target variables),

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 819
�
 A set of examples E, where each example is a pair of tuples
from the description and target space, respectively, i.e.,
E¼ fðXi,YiÞ9XiAX,YiAY ,1r irNg and N is the number of
examples in E (N¼ 9E9), and

�
 A quality criterion q, which rewards models with high pre-

dictive accuracy and low complexity.

Find: a function f : X-Y such that f maximizes q.
Here, the function f is represented with decision trees, i.e.,

predictive clustering trees or ensembles thereof. If the tuples from
Y (the target space) consist of continuous/numeric variables then
the task at hand is multi-target regression. Likewise, if the tuples
from Y consist of discrete/nominal variables then the task is called
multi-target classification.

The task of multi-target classification can be seen as a general-
ization of the multi-label classification task [20]. Namely, multi-
label classification is concerned with learning from examples,
where each example is associated with multiple labels. These
multiple labels belong to a predefined set of labels. The goal
is then to construct a predictive model that will provide a list
of relevant labels for a given, previously unseen example.
For addressing the task multi-label classification using multi-
target classification, each of the labels can be considered as a
binary (0/1) discrete target variable: the label vector is then a
target tuple of binary discrete variables. The labels for which 1’s
are predicted are thus considered as relevant labels.

2.2. Hierarchical classification

Classification is defined as the task of learning a model using a set
of previously classified instances and applying the obtained model to
a set of previously unseen examples [10, 21]. The unseen examples
are classified into a single class from a set of possible classes.

Hierarchical classification differs from traditional classification
that the classes are organized in a hierarchy. An example that
belongs to a given class automatically belongs to all its super-
classes (this is known as the hierarchy constraint). Furthermore, if
an example can belong simultaneously to multiple classes that
can follow multiple paths from the root class, then the task is
called hierarchical multi-label classification (HMC) [3,8]. This is
the setting we use in this paper.

We formally define the task of hierarchical multi-label classi-
fication as follows:

Given:
�
 A description space X that consists of tuples of values of
primitive data types (discrete or continuous), i.e.,
8XiAX,Xi ¼ ðxi1 ,xi2 , . . . ,xiD Þ, where D is the size of the tuple (or
number of descriptive variables),

�
 A target space S, defined with a class hierarchy ðC,rhÞ, where

C is a set of classes and rh is a partial order (e.g., structured as
a rooted tree) representing the superclass relationship
(8 c1,c2AC : c1rhc2 if and only if c1 is a superclass of c2),

�
 A set E, where each example is a pair of a tuple and a set, from

the descriptive and target space, respectively, and each set
satisfies the hierarchy constraint, i.e., E¼ fðXi,SiÞ9XiA
X,SiDC,cASi) 8c

0rhc : c0ASi,1r irNg and N is the number
of examples in E (N¼ 9E9), and

�
 A quality criterion q, which rewards models with high pre-

dictive accuracy and low complexity.

Find: a function f : X-2C (where 2C is the power set of C) such
that f maximizes q and cA f ðxÞ) 8c0rhc : c0A f ðxÞ, i.e., predictions
made by the model satisfy the hierarchy constraint. In our case, the
function f is represented with decision trees, i.e., predictive
clustering trees or ensembles thereof.
3. Tree ensembles for predicting structured outputs

In this section, we present our ensemble methods for predict-
ing structured outputs. We begin by presenting predictive clus-
tering trees and their instantiations for predicting multiple
continuous variables, predicting multiple discrete variables, and
hierarchical multi-label classification. Next, we describe how
ensemble learning methods can be adapted to use predictive
clustering trees as base predictive models. Finally, we describe an
approach to the prediction of structured outputs that uses local
predictive models.

3.1. PCTs for structured outputs

The predictive clustering trees (PCTs) framework views a
decision tree as a hierarchy of clusters: the top-node corresponds
to one cluster containing all data, which is recursively partitioned
into smaller clusters while moving down the tree. The PCT
framework is implemented in the CLUS system [22], which is
written in Java and is open-source software licensed under the
GNU General Public Licence. The CLUS system is available for
download at http://clus.sourceforge.net.

CLUS takes as input a set of examples E¼ fðxi,yiÞ9i¼ 1, . . .Ng,
where each xi is a vector of attribute values and yi are values of a
structured (output) datatype TY. In this paper, we consider three
different classes of datatypes TY: tuples of discrete values, tuples
of real values, and hierarchies. For each type TY, CLUS needs two
functions to be defined. The prototype function returns a repre-
sentative structured value given a set of such structured values.
For example, given a set of tuples of discrete variables, the
prototype function computes and returns a tuple of discrete
variables that is representative for the whole set. The variance
function describes how homogeneous a set of structured values
is: it is typically based on a distance function on the space of
structured values.

PCTs can be induced with a standard top-down induction of

decision trees (TDIDT) algorithm [10]. The algorithm is presented
in Table 1. It takes as input a set of examples (E) and outputs a
tree. The heuristic (h) that is used for selecting the tests (t) is the
reduction in variance caused by partitioning (P) the instances
(see line 4 of the BestTest procedure in Table 1). By maximizing
the variance reduction, the cluster homogeneity is maximized and
the predictive performance is improved.

The main difference between the algorithm for learning PCTs
and a standard decision tree learner (i.e., the C4.5 algorithm [23])
is that the former considers the variance function and the
prototype function, that computes a label for each leaf, as
parameters that can be instantiated for a given learning task.
So far, PCTs have been instantiated for the following tasks: multi-
target prediction [6,7], hierarchical multi-label classification [8]
and prediction of time-series [9]. In this paper, we focus on the
first two tasks.
3.1.1. PCTs for predicting multiple target variables

PCTs that are able to predict multiple targets simultaneously
are called multi-target decision trees (MTDTs). The MTDTs that
predict a tuple of continuous variables (regression tasks) are
called multi-target regression trees (MTRTs), while the MTDTs
that predict a tuple of discrete variables are called multi-target
classification trees (MTCTs). The instantiation of the CLUS system
that learns multi-target trees is called CLUS-MTDT.

The variance and prototype functions for MTRTs are instan-
tiated as follows. The variance is calculated as the sum of the
variances of the target variables, i.e., VarðEÞ ¼

PT
i ¼ 1 VarðYiÞ. The

variances of the target variables are normalized, so that each

http://clus.sourceforge.net

Table 1
The top-down induction algorithm for PCTs.

procedure PCT procedure BestTest

Input: A dataset E Input: A dataset E

Output: A predictive clustering tree Output: the best test (tn), its heuristic score (hn) and

the partition (Pn) it induces on the dataset (E)

1: ðtn ,hn ,PnÞ ¼ BestTestðEÞ 1: ðtn ,hn ,PnÞ ¼ ðnone,0,|Þ

2: if tnanone then 2: for each possible test t do

3: for each Ei APn do 3: P ¼ partition induced by t on E

4: treei¼PCT(Ei)
4: h¼ VarðEÞ�

P
Ei AP

9Ei9
9E9

VarðEiÞ

5: return nodeðtn ,
S

iftreeigÞ 5: if ðh4hn
Þ4Acceptableðt,PÞ then

6: else 6: ðtn ,hn ,PnÞ ¼ ðt,h,PÞ
7: return leaf(Prototype(E)) 7: return ðtn ,hn ,PnÞ

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833820
target variable contributes equally to the overall variance. This is
due to the fact that the target variables can have completely
different ranges. Namely, if one of the target variables is in the
range (0, 1) and another in the range (10, 100) and normalization
is not used, then the values of the second variable will contribute
much more to the overall score than the values of the first
variable. In addition, CLUS-MTDT supports weighting of the
(normalized values of the) target variables so that the variance
function gives more weight to some variables and less to others.
The prototype function (calculated at each leaf) returns as a
prediction the tuple with the mean values of the target variables,
calculated using the training instances that belong to the
given leaf.

The variance function for the MTCTs is computed as the sum of
the Gini indices of the target variables, i.e., VarðEÞ ¼

PT
i ¼ 1 GiniðE,YiÞ.

Furthermore, one can also use the sum of the entropies of class
variables as a variance function, i.e., VarðEÞ ¼

PT
i ¼ 1 EntropyðE,YiÞ

(this definition has also been used in the context of multi-label
prediction [24]). The CLUS system also implements other variance
functions, such as reduced error, gain ratio and the m-estimate. The
prototype function returns a vector of probabilities that an instance
belongs to a given class for each target variable. Using these
probabilities, the most probable (majority) class for each target
attribute can be calculated.
3.1.2. PCTs for hierarchical multi-label classification

Hierarchical multi-label classification is a variant of classifica-
tion where a single example may belong to multiple classes at the
same time and the classes are organized in a form of hierarchy.
An example that belongs to some class c automatically belongs to
all super-classes of c: This is called the hierarchical constraint.
Problems of this kind can be found in many domains including
text classification, functional genomics, and object/scene classifi-
cation. Silla and Freitas [3] give a detailed overview of the
possible application areas and the available approaches to HMC.

Silla and Freitas [3] describe the algorithms for hierarchical
classification with a 4-tuple /D,S,O,YS. In this 4-tuple, D
indicates whether the algorithm makes predictions for a single
or multiple paths in the hierarchy, S is the depth of the predicted
classes, O is the taxonomy structure of the classes that the
algorithm can handle, and Y is the type of the algorithm (local
or global). Using this categorization, the algorithm we present
here can be described as follows:
�
 D¼multiple path prediction: the algorithm can assign single
or multiple paths, i.e., predicted classes, to each instance.

�
 S¼ non-mandatory leaf-node prediction: an instance can be

labelled with a label at any level of the taxonomy.

�
 O¼ tree or directed acyclic graph: the algorithm can handle

both tree-shaped and DAG hierarchies of classes.
�
 Y¼ global classifier: the algorithm constructs a single model
valid for all classes.

CLUS-HMC is the instantiation (with the distances and proto-
types as defined below) of the PCT algorithm for hierarchical
classification implemented in the CLUS system. The variance and
prototype are defined as follows [8]. First, the set of labels of each
example is represented as a vector with binary components; the
ith component of the vector is 1 if the example belongs to class ci

and 0 otherwise. It is easily checked that the arithmetic mean of a
set of such vectors contains as ith component the proportion of
examples of the set belonging to class ci.

The variance of a set of examples E is defined as the average
squared distance between each example’s class vector ðLiÞ and the
set’s mean class vector ðLÞ, i.e.,

VarðEÞ ¼
1

9E9
�
X
Ei AE

dðLi,LÞ
2:

In the HMC context, the similarity at higher levels of the
hierarchy is more important than the similarity at lower levels.
This is reflected in the distance measure used in the above
formula, which is a weighted Euclidean distance

dðL1,L2Þ ¼

ffiX9L9
l ¼ 1

wðclÞ � ðL1,l�L2,l

vuut
Þ
2,

where Li,l is the lth component of the class vector Li of an
instance Ei, 9L9 is the size of the class vector, and the class weights
w(c) decrease with the depth of the class in the hierarchy. More
precisely, wðcÞ ¼w0 � fwðpðcÞÞg, where p(c) denotes the parent of
class c and 0ow0o1Þ.

For example, consider the toy class hierarchy shown in
Fig. 1(a) and (b), and two data examples: ðX1,S1Þ and ðX2,S2Þ that
belong to the classes S1 ¼ fc1,c2,c2:2g (boldface in Fig. 1(b)) and
S2 ¼ fc2g, respectively. We use a vector representation with
consecutive components representing membership of class c1,
c2, c2:1, c2:2 and c3, in that order (preorder traversal of the tree of
class labels). The distance is then calculated as follows:

dðS1,S2Þ ¼ dð½1,1,0,1,0�,½0,1,0,0,0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0þw2

0

q
:

This example calculates the distance between two data
instances that belong to classes organized into a tree-shaped
hierarchy. As discussed at the beginning of this section, the
proposed methods also support hierarchies in the form of a
DAG. Fig. 1(c) depicts an example of a DAG structured hierarchy.
The main difference between tree-shaped and DAG hierarchies is
that the classes can have multiple parent classes at different
levels/depths in the hierarchy. Hence, the depth of a class is not
unique: classes do not have a single path from the top-node
(for example see class c6 in Fig. 1(c)). This makes it impossible

Fig. 1. Toy examples of hierarchies structured as a tree and a DAG. (a) Class label names contain information about the position in the hierarchy, e.g., c2:1 is a subclass of c2.

(b) The set of classes S1 ¼ fc1 ,c2 ,c2:2g, shown in bold in the hierarchy, represented as a vector (Lk). (c) A class hierarchy structured as a DAG. The class c6 has two parents:

c1 and c4.

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 821
to calculate the value of the weight as wðcÞ ¼w0 � fwðpðcÞÞg.
To resolve this, several approaches have been proposed to
compute the weight of a class with multiple parents:
�
 Flattening the DAG into a tree by copying the subtrees that
have multiple parents (wðcÞ ¼w0 �

P
jfwðpjðcÞÞg, where p(c)

denotes the parent of class c). The more paths in DAG lead to
a class, the larger weight is assigned to this class by this
method.

�
 Take the weight of the parent with largest depth (wðcÞ ¼

w0 �minjfwðpjðcÞÞgÞ. The drawback of this approach is that
assigns a small weight to a class with multiple parents that
appear both close to the top-level and deep in the hierarchy.

�
 Take the weight of the parent with smallest depth (wðcÞ ¼

w0 �maxj fwðpjðcÞÞgÞ. It guarantees a large weight for classes
that appear near the top-level of the hierarchy, however it
does not satisfy the inequality wðcÞowðparjðcÞÞ.

�
 Take the average weight of all parents (wðcÞ ¼w0�

avgj fwðpjðcÞÞgÞ. This approach is a compromise between the
previous two approaches.

Note that all these weighting schemes become equivalent for
tree-shaped hierarchies. Vens et al. [8] perform an extensive
experimental evaluation of the weighting schemes and recom-
mend to use as a weight of a given class the average over the
weights of all its parents (i.e., wðcÞ ¼w0 � avgjfwðparjðcÞÞgÞ. We
thus use the average weighting scheme in this study.

Recall that the instantiation of PCTs for a given task requires
proper instantiation of the variance and prototype functions. The
variance function for the HMC task is instantiated using the
weighted Euclidean distance measure (as given above), which is
further used to select the best test for a given node by calculating
the heuristic score (line 4 from the algorithm in Table 1). We now
discuss the instantiation of the prototype function for the
HMC task.

A classification tree stores in a leaf the majority class for that
leaf, which will be the tree’s prediction for all examples that will
arrive in the leaf. In the case of HMC, an example may have
multiple classes, thus the notion of majority class does not apply
in a straightforward manner. Instead, the mean L of the class
vectors of the examples in the leaf is stored as a prediction. Note
that the value for the ith component of L can be interpreted as the
probability that an example arriving at the given leaf belongs to
class ci.

The prediction for an example that arrives at the leaf can be
obtained by applying a user defined threshold t to the prob-
ability; if the ith component of L is above t then the examples
belong to class ci. When a PCT is making a prediction, it preserves
the hierarchy constraint (the predictions comply with the parent–
child relationships from the hierarchy) if the values for the
thresholds t are chosen as follows: tirtj whenever cirhcj (ci is
ancestor of cj). The threshold t is selected depending on the
context. The user may set the threshold such that the resulting
classifier has high precision at the cost of lower recall or vice
versa, to maximize the F-score, to maximize the interpretability
or plausibility of the resulting model etc. In this work, we use a
threshold-independent measure (precision–recall curves) to eval-
uate the performance of the HMC models.

3.2. Ensembles of PCTs for predicting structured outputs

An ensemble is a set of predictive models (called base
predictive models). In homogeneous ensembles, such as the ones
we consider here, the base predictive models are constructed
using the same algorithm. The prediction of an ensemble for a
new instance is obtained by combining the predictions of all base
predictive models from the ensemble. In this paper, we consider
ensembles of PCTs for structured prediction. The PCTs in the
ensembles are constructed using the bagging and random forests
methods that are often used in the context of decision trees.
We have adapted these methods to use PCTs.
3.2.1. Constructing ensembles of PCTs

A necessary condition for an ensemble to have better pre-
dictive performance than any of its individual members is that the
base predictive models are accurate and diverse [15]. However,
there is an ongoing scientific debate concerning the trade-off
between the accuracy and the diversity of the base predictive
models in the context of the ensembles’ predictive performance
[25,26]. An accurate predictive model does better than random
guessing on new examples. Two predictive models are diverse if
they make different errors on new examples. There are several
ways to introduce diversity in a set of base predictive models: by
manipulating the training set (by changing the weight of the
examples [11,27], by changing the attribute values of the exam-
ples [28], by manipulating the feature space [29,30]) and by
manipulating the learning algorithm itself [29,31].

We have implemented the bagging and random forests meth-
ods within the CLUS system. These two ensemble learning
techniques are most widely known and have primarily been used
in the context of decision trees [16]. The algorithms of these
ensemble learning methods are presented in Table 2. For the
random forests method (Table 2, right), the PCT algorithm for

Table 2
The ensemble learning algorithms: bagging and random forests. Here, E is the set

of the training examples, k is the number of trees in the forest, and f(D) is the size

of the feature subset considered at each node during tree construction for random

forests.

procedure Bagging(E,k) procedure RForest(E,k,f ðDÞ)

returns Forest returns Forest

1: F ¼ | 1: F ¼ |
2: for i¼1 to k do 2: for i¼1 to k do
3: Ei¼bootstrap(E) 3: Ei¼bootstrap(E)

4: Ti ¼ PCTðEiÞ 4: Ti ¼ PCT_rndðEi ,f ðDÞÞ

5: F ¼ F
S
fTig 5: F ¼ F

S
fTig

6: return F 6: return F

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833822
structured prediction was changed to PCT_rnd: randomized
version of the selection of attributes was implemented, which
replaced the standard selection of attributes.
3.2.2. Bagging

Bagging [11] is an ensemble method that constructs the
different classifiers by making bootstrap replicates of the training
set and using each of these replicates to construct a predictive
model (Table 2, left). Each bootstrap sample is obtained by
randomly sampling training instances, with replacement, from
the original training set, until an equal number of instances as in
the training set is obtained. Breiman [11] showed that bagging
can give substantial gains in predictive performance, when
applied to an unstable learner (i.e., a learner for which small
changes in the training set result in large changes in the predic-
tions), such as classification and regression tree learners.
3.2.3. Random forests

A random forest [29] is an ensemble of trees, where diversity
among the predictors is obtained using bootstrap replicates as in
bagging, and additionally by changing the set of descriptive
attributes during learning (Table 2, right). More precisely, at each
node in the decision trees, a random subset of the descriptive
attributes is taken, and the best attribute is selected from this
subset. The number of attributes that are retained is given by a
function f of the total number of descriptive attributes D (e.g.,
f ðDÞ ¼ 1, f ðDÞ ¼ b

ffiffiffiffi
D
p
þ1c, f ðDÞ ¼ blog2ðDÞþ1c y). By setting

f ðDÞ ¼D, we obtain the bagging procedure. The algorithm for
learning a random forest using PCTs as base classifiers is pre-
sented in Table 2.
C 2

Fig. 2. An illustration of the hierarchical single-label classification approach used

by Vens et al. [8]. The local classifiers at each branch from the hierarchy are:

(a) decision trees and (b) ensembles of decision trees.
3.2.4. Combining the predictions of individual PCTs

The prediction of an ensemble for a new instance is obtained
by combining the predictions of all the base predictive models
from the ensemble. The predictions from the models can be
combined by taking the average (for regression tasks) and the
majority or probability distribution vote (for classification tasks),
as described in [13,11], or by taking more complex aggregation
schemes [25].

We use PCTs as base predictive models for the ensembles for
structured outputs. To obtain a prediction from an ensemble for
predicting structured outputs, we accordingly extend the voting
schemes. For the datasets with multiple continuous targets, as the
prediction of the ensemble, we take the average per target of the
predictions of the base classifiers. For the datasets for hierarchical
classification we also use the average of the predictions and apply
the thresholding described in Section 3.1.2. We obtain the
ensemble predictions for the datasets with multiple discrete
targets using probability distribution voting (as suggested by
Bauer and Kohavi [13]) per target.
3.3. Local prediction of structured outputs with PCTs and ensembles

The presented structured output learning algorithms (CLUS-
MTDT and CLUS-HMC) belong to the group of methods known as
‘big-bang’ or global predictive models [3,4]. Global predictive
models make a single prediction for the entire structured output,
i.e., simultaneously predict all of its components. Local predictive
models of structured outputs, on the other hand, use a collection
of predictive models, each predicting a component of the overall
structure that needs to be predicted.

The local predictive models for the task of predicting multiple
targets are constructed by learning a predictive model for each of
the targets separately. In the task of hierarchical multi-label
classification, however, there are four different approaches that
can be used: flat classification, local classifiers per level, local
classifiers per node, and local classifiers per parent node (see [3]
for details).

Vens et al. [8] investigated the performance of the last two
approaches with local classifiers over a large collection of datasets
from functional genomics. The conclusion of the study was that
the last approach (called hierarchical single-label classification -
HSC) performs better in terms of predictive performance, smaller
total model size and faster induction times.

In particular, the CLUS-HSC algorithm by Vens et al. [8],
presented in Fig. 2(a), constructs a decision tree classifier for
each edge (connecting a class c with a parent class par(c)) in the
hierarchy, thus creating an architecture of classifiers. The corre-
sponding tree predicts membership to class c, using the instances
that belong to par(c). The construction of this type of trees uses
few instances, as only instances labeled with par(c) are used for
training. The instances labeled with class c are positive instances,
while the ones that are labeled with par(c), but not with c are
negative.

The resulting HSC tree predicts the conditional probability
Pðc9parðcÞÞ. A new instance is predicted by recursive application of
the product rule PðcÞ ¼minjPðc9parjðcÞÞ � PðparjðcÞÞ (with parj(c)
denoting the jth parent of c in the case of a DAG), starting from
the tree for the top-level class. Again, the probabilities are
thresholded to obtain the set of predicted classes. To satisfy the
hierarchy constraint, the threshold t should be chosen as in the
case of CLUS-HMC.

In this paper, we extend the approach of Vens et al. [8] by
applying ensembles as local classifiers, instead of single decision
trees. The CLUS-HSC algorithm can be applied to ensemble
learning in two ways: by constructing an ensemble of architec-
tures or an architecture of ensembles. The first approach creates
the ensemble by creating multiple architectures (similar to the
one shown in Fig. 2(a)). These multiple architectures can be
created on different bootstrap replicates, on different feature
spaces, by different local classifiers etc. The second approach is

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 823
simpler and, instead of a single local classifier (for example a
decision tree), uses an ensemble as a classifier at each branch
(depicted in Fig. 2(b)). We prefer here the second approach since
it is closer to the learning of local classifiers for predicting
multiple target variables.

3.4. Computational complexity

In this section, we analyze and discuss the computational
complexity aspects of the proposed methods. We begin by
deriving the computational complexity of a single tree. We then
analyze the computational complexity of a single ensemble. Next,
we discuss the computational complexity of the trees and the
ensembles for local prediction of structured outputs. After that,
we discuss the computational complexity of the trees and the
ensembles for global prediction of structured outputs. Finally, we
compare the computational complexities of the models for local
and global prediction of the structured outputs.

We assume that the training set contains N instances and D

descriptive attributes (of which M are continuous). Furthermore,
S is the size of the output measured as number of target variables
or the number of classes in the hierarchy and the hierarchy
contains G edges. The ensembles contain k base predictive models.

Single tree: Three procedures contribute to the computational
complexity of the tree learning algorithm described in Table 1. The
procedures are executed at each node of the tree and they include:
sorting the values of the M numeric descriptive attributes with a
cost of OðMN log NÞ, calculating the best split for a single target
variable which costs OðDNÞ, and applying the split to the training
instances with a cost of OðNÞ. Furthermore, we assume, as in [32],
that the tree is balanced and bushy. This means that the depth of the
tree is in the order of log N, i.e., Oðlog NÞ. Having this in mind and
considering that M¼OðDÞ, the total computational cost of con-
structing a single tree is OðDN log2 NÞþ OðDN log NÞþOðN log NÞ.

Single ensemble: The computational complexity of constructing
an ensemble depends on the computational complexity of construct-
ing its base predictive models. In general, the computation com-
plexity of learning an ensemble with k base predictive models is
k times higher than the computational complexity of learning a
single base predictive model. Thus, the overall computational com-
plexity of an ensemble method can be calculated as kðOðDN log2 NÞþ

OðDN log NÞþOðN log NÞÞ. However, ensemble methods perform
sampling of the instances and/or the features, thus potentially
reducing the computational complexity of constructing a single base
predictive model (by a constant factor) as compared to the construc-
tion of a base predictive model without instance/feature sampling.
The creation of the bootstrap replicates of the training set for bagging
and random forests has a computational complexity of OðNÞ, while
the number of instances used to train the base predictive models is
not N, but N0 ¼ 0:632 � N [11]. The random forests, in addition to the
bootstrap sampling of the instances, also perform random sampling
of the features with a selection function f(D), i.e., the number of
descriptive attributes (considered at each step) is D0 ¼ f ðDÞ. The
random sampling of the features at each node costs OðD0 log N0Þ

Considering this, the overall computational complexity of con-
structing a random forest is kðOðD0N0 log2 N0ÞþOðD0N0 log N0Þþ

OðN0 log N0ÞþOðNÞþOðD0 log N0ÞÞ.
Local models: We extend this analysis for local prediction of

structured outputs. For the task of predicting multiple targets, a
model (a tree or an ensemble) is constructed for each target
separately, thus the computational complexity is S times higher
than the computational complexity of a model for a single target
attribute. For the HMC task, a model is constructed for each edge
in the hierarchy (see Fig. 2). Hence, the computational complexity
of this architecture of models is at most G times higher than
the computational complexity of a single model. However,
the computational complexity of an architecture of models also
depends on the average number of classes per instance and the
average number of leaf classes per instance. Smaller average
numbers of classes and leaf classes per instance lead to smaller
sets of training instances for the local models and, consequently,
smaller computational complexity. In typical applications, the
computational complexity of this approach is smaller than G

times the complexity of constructing a single model.
Global models: The derivation of the computational complexity

of constructing PCTs for global prediction of structured outputs
follows the same pattern as for a single PCT for local prediction. The
difference here is in the procedure for calculating the best split at a
given node. This procedure, instead of a computational complexity
of OðDNÞ, for the task of predicting structured outputs has a
computational complexity of OðSDNÞ. The computational complexity
for the construction of the complete tree is then as follows:
OðDN log2 NÞþOðSDN log NÞþOðN log NÞ. The construction of an
ensemble that consists of k PCTs for global prediction costs k times
more than the construction of a single PCT. As for the ensembles for
local prediction, the ensemble methods reduce the computational
cost with the selection of instances and/or features.

Comparison of local and global models: We further compare
the computational complexity of local and global models (both
PCTs and ensembles) for prediction of structured outputs. The
dominant terms in the computational complexity of local models
(a set of PCTs) for multiple targets is OðSDN log2 NÞ and local
models (a set of PCTs) for HSC is OðGDN log2 NÞ. Let us assume
that So log N. This means that the dominant term in the compu-
tational complexity of global models for both multiple targets and
HSC is OðDN log2 NÞ. Considering this, global models have OðSÞ and
OðGÞ times lower computational complexity than local models for
predicting multiple targets and HMC, respectively. On the other
hand, if we assume that S4 log N, then the dominant term in the
computational complexity of global models is OðSDN log NÞ.
In this case, global models have Oðlog NÞ or OððG=SÞlog NÞ times
lower computational complexity than local models for predicting
multiple targets or HMC, respectively. Moreover, for the task of
HMC, if the target hierarchy is tree-shaped then G¼ S�1, i.e.,
G� S and the global models have Oðlog NÞ times smaller compu-
tational complexity than local models. Furthermore, when the
target hierarchy is a DAG, the computational advantage of the
global models depends of the average number of parents that
classes have. If the classes have more parents on average, the G=S

ratio will be larger and the computational complexity of the
global models will be lower.

Global models have lower computational complexity than
local models mainly due to the multiple repetitions of the sorting
of the numeric attributes in the latter. However, the difference in
the computational complexity is further amplified by the fact that
global models are smaller, on average, than the local models. Also,
implementation-wise, global models are faster to construct also
because of some properties of most CPU architectures. Namely,
it is faster and easier to multiply/add/subtract two arrays with
size S, than to multiply/add/subtract S times two arrays with size
one [33].

Random forests are very efficient ensemble methods and have
very good predictive performance. Thus, we discuss in more detail the
computational complexity of random forests for global prediction of
structured outputs. The upper bound of the computational complex-
ity of global random forests is kðOðD0N0 log2 N0ÞþOðSD0N0 log N0ÞÞ.
The complexity of global random forests depends linearly on the
number of base predictive models (OðkÞ) and logarithmically (or via
some other user defined function that determines the number of
features sampled) on the number of numeric descriptive attributes
(OðD0Þ ¼Oðlog DÞÞ. Furthermore, if S4 log N then the complexity will
depend linearly on the size of the structured output and OðN0 log2 N0Þ

Table 3
Properties of the datasets with multiple continuous targets (regression datasets);

N is the number of instances, D=C the number of descriptive attributes (discrete/

continuous), and T the number of target attributes.

Name of dataset N 9D9=9C9 T

Collembola [35] 393 8/39 3

EDM [36] 154 0/16 2

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833824
on the number of training instances. If So log N, then the complexity
of the random forests depends OðN0 log N02Þ on the number of
training instances, and not on the size of the structured output.

The computational efficiency of the method for predicting
structured outputs proposed in Gärtner and Vembu [34], one of
the most recent and most efficient methods for predicting
structured outputs, depends polynomially on the size of the
structured outputs and the number of training instances. On the
other hand, the complexity of global random forests, depends
linearly on the number of base predictive models (typically the
ensembles have at most hundreds of base predictive models),
logarithmically on the number of continuous descriptive attri-
butes and N log N on the number of training instances. Further-
more, if the size of the output is larger than log N then the
computational complexity will depend linearly on the output size.
To summarize, global random forests (and global ensembles, in
general), according to the above analyses of their computation
complexity, are very efficient methods for predicting structured
outputs.
Forestry-Kras [37] 60,607 0/160 11

Forestry-Slivnica-LandSat [38] 6,218 0/150 2

Forestry-Slivnica-IRS [38] 2,731 0/29 2

Forestry-Slivnica-SPOT [38] 2,731 0/49 2

Sigmea real [39] 817 0/4 2

Soil quality [19] 1,944 0/142 3

Solar-flare 1 [40] 323 10/0 3

Solar-flare 2 [40] 1,066 10/0 3

Vegetation Clustering [41] 29,679 0/65 11

Vegetation Condition [42] 16,967 1/39 7

Water quality [43,44] 1,060 0/16 14

Table 4
Properties of the datasets with multiple discrete targets (classification datasets);

N is the number of instances, D=C the number of descriptive attributes (discrete/

continuous), and T the number of target attributes.

Name of dataset N 9D9=9C9 T

EDM [36] 154 0/16 2

Emotions [45] 593 0/72 6

Mediana [46] 7,953 21/58 5

Scene [47] 2,407 0/294 6

Sigmea real [39] 817 0/4 2

Solar-flare 1 [40] 323 10/0 3

Thyroid [40] 9,172 22/7 7

Water quality [43,44] 1,060 0/16 14

Yeast [48] 2,417 0/103 14

Table 5
Properties of the datasets with hierarchical targets; Ntr=Nte is the number of

instances in the training/testing dataset, D/C is the number of descriptive

attributes (discrete/continuous), 9H9 is the number of classes in the hierarchy,

Hd is the maximal depth of the classes in the hierarchy, L is the average number of

labels per example, and LL is the average number of leaf labels per example. Note

that the values forHd are not always a natural number because the hierarchy has a

form of a DAG and the maximal depth of a node is calculated as the average of the

depths of its parents.

Domain Ntr=Nte 9D9=9C9 9H9 Hd L LL

ImCLEF07D [49] 10,000/1,006 0/80 46 3.0 3.0 1.0

ImCLEF07A [49] 10,000/1,006 0/80 96 3.0 3.0 1.0

Diatoms [50] 2,065/1,054 0/371 377 3.0 1.95 0.94

Enron [51] 988/660 0/1,001 54 3.0 5.30 2.84

Reuters [52] 3,000/3,000 0/47,236 100 4.0 3.20 1.20

WIPO [53] 1,352/358 0/74,435 183 4.0 4.0 1.0

Expression-FunCat [24] 2,494/1,291 4/547 475 4.0 8.87 2.29

SCOP-GO [24] 6,507/3,336 0/2,003 523 5.5 6.26 0.95

Sequence-FunCat [24] 2,455/1,264 2/4,448 244 4.0 3.35 0.94

Yeast-GO [54] 2,310/1,155 5,588/342 133 6.3 5.74 0.66
4. Experimental design

In this section, we describe the procedure for experimental
evaluation of the proposed ensemble methods for predicting
structured outputs. First, we state the questions we consider.
Next, we present the datasets we use to evaluate the algorithms,
and then the evaluation measures we applied. In the last subsec-
tion, we give the parameter values used in the algorithms and the
statistical tests that we used.

4.1. Experimental questions

Given the methodology from Section 3, we construct several
types of trees and ensembles thereof. First, we construct PCTs that
predict components of the structured output: a separate tree for
each variable from the target tuple (predicting multiple targets)
and a separate tree for each hierarchy edge (hierarchical classi-
fication). Second, we learn PCTs that predict the entire structured
output simultaneously: a tree for the complete target tuple and a
tree for the complete hierarchy, respectively. Finally, we construct
the ensemble models in the same manner using both bagging and
random forests.

We consider three aspects of constructing tree ensembles for
predicting structured outputs: predictive performance, conver-
gence and efficiency. We first assess the predictive performance
of global and local tree ensembles and investigate whether global
and local ensembles have better predictive performance than the
respective single model counterparts. Moreover, we check
whether the exploitation of the structure of the output can lift
the predictive performance of an ensemble (i.e., global vs. local
ensembles). Next, we investigate the saturation/convergence of
the predictive performance of global and local ensembles with
respect to the number of base predictive models they consist of.
Namely, we inspect the predictive performance of the ensembles
at different ensemble sizes (i.e., we construct saturation curves).
The goal is to check which type of ensembles, global or local,
saturates at a smaller number of trees. Finally, we assess the
efficiency of both global and local single predictive models and
ensembles thereof by comparing the running times for and the
sizes of the models obtained by the different approaches.

4.2. Descriptions of the datasets

In this section, we present the datasets that were used to
evaluate the performance of the ensembles. The datasets are
divided into three groups based on the type of their output:
multiple continuous targets datasets (regression), multiple dis-
crete targets datasets (classification) and hierarchical multi-label
classification datasets (HMC). Statistics about the used datasets
are presented in Tables 3–5, respectively.

The datasets with multiple continuous targets (13 in total, see
Table 3) are mainly from the domain of ecological modeling. The
datasets with multiple discrete targets (9 in total, see Table 4) are
from various domains: ecological modeling (sigmea real and water

quality), biology (yeast), multimedia (scene and emotions) and

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 825
media space analysis (mediana). The datasets that have classes
organized in a hierarchy come from various domains, such as:
biology (Expression-FunCat, SCOP-GO, Yeast-GO and Sequence-

FunCat), text classification (Enron, Reuters and WIPO) and image
annotation/classification (ImCLEF07D, ImCLEF07A and Diatoms).
Hence, we use 10 datasets from three domains (see Table 5).
Note that two datasets from the biological domain have a
hierarchy organized as a DAG (they have GO in the dataset name),
while the remaining datasets have tree-shaped hierarchies. For
more details on the datasets, we refer the reader to the referenced
literature.

4.3. Evaluation measures

Empirical evaluation is the most widely used approach for
assessing the performance of machine learning algorithms. The
performance of a machine learning algorithm is assessed using
some evaluation measure. The different machine learning tasks,
described in Section 2, use ‘task-specific’ evaluation measures. We
first describe the evaluation measures for multiple continuous
targets (regression), then for multiple discrete targets (classifica-
tion) and at the end for hierarchical classification.

For the task of predicting multiple continuous targets (regres-
sion), we employed three well known measures: the correlation
coefficient (CC), root mean squared error (RMSE) and relative root
mean squared error (RRMSE). For each of these measures, we
performed tests for statistical significance and constructed
saturation curves. We present here only the results in terms of
RRMSE, but same conclusions hold for the other two measures.

What evaluation measure to use in the case of classification
algorithms is not as clear as in the case of regression. Sokolova
and Lapalme [55] conducted a systematic analysis of 24 perfor-
mance measures that can be used in a classification context. They
conclude that evaluation measures for classification algorithms
should be chosen based on the application domain.

In our study, we used seven evaluation measures for classification:
accuracy, precision, recall, F-score, the Matthews correlation coeffi-
cient, balanced accuracy (also known as Area Under the Curve) and
discriminant power. We used two averaging approaches to adapt
these measures for multi-class problems: micro and macro averaging
(note that averaging is not needed for accuracy). The formulas for
calculating the evaluation measures are given in Appendix A. Since
the goal of this study is not to assess the evaluation measures
themselves, we present here only the results in terms of the micro
average F-score (F ¼ 2 � ððprecision � recallÞ=ðprecisionþrecallÞÞÞ.
However, the conclusions drawn from the evaluation of the perfor-
mance of the algorithms using the other measures concur with the
ones presented here.

In the case of hierarchical classification, we evaluate the
algorithms using the Area Under the Precision–Recall Curve
(AUPRC), and in particular, the Area Under the Average Preci-
sion–Recall Curve (AUPRC) as suggested by Vens et al. [8]. A
precision–recall curve plots the precision of a classifier as a
function of its recall. The points in the PR space are obtained by
varying the value for the threshold t from 0 to 1 with step 0.02.
The precision and recall are micro averaged for all classes from
the hierarchy.

Finally, we compare the algorithms by measuring their efficiency
in terms of time consumption and size of the models. We measure
the processor time needed to construct the models: in the case of
predicting the components of the structure, we sum the times
needed to construct the separate models. In a similar way, we
calculated the sizes of the models as the total number of nodes
(internal nodes and leafs). The experiments for predicting multiple
targets were performed on a server running Linux, with two Intel
Quad-Core Processors running at 2.5 GHz and 64 GB of RAM.
The experiments for the hierarchical classification were run on a
cluster of AMD Opteron processors (1.8–2.4 GHz, Z2 GB RAM).

4.4. Experimental setup

Here, we first state the parameter values used in the algorithms
for constructing the single trees and the ensembles for all types of
targets. We then describe how we assessed the statistical signifi-
cance of the differences in performance of the studied algorithms.

The single trees for all types of outputs are obtained using
F-test pruning. This pruning procedure uses the exact Fisher test
to check whether a given split/test in an internal node of the tree
results in a reduction in variance that is statistically significant at
a given significance level. If there is no split/test that can satisfy
this, then the node is converted to a leaf. An optimal significance
level was selected using internal threefold cross validation, from
the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

The construction of an ensemble takes, as an input parameter,
the size of the ensemble, i.e., number of base predictive models to
be constructed. We constructed ensembles with 10, 25, 50, 75 and
100 base predictive models for all types of outputs and all
datasets. In addition, for the datasets with multiple continuous
targets we constructed ensembles with 150 and 250 base pre-
dictive models, and for the datasets with multiple discrete targets
ensembles with 250, 500 and 1000 base predictive models.
Following the findings from the study conducted by Bauer and
Kohavi [13], the trees in the ensembles were not pruned.

The random forests algorithm takes as input the size of the
feature subset that is randomly selected at each node. For the
multiple targets datasets, we apply the logarithmic function of
the number of descriptive attributes blog29D9cþ1, which is recom-
mended by Breiman [29]. For the hierarchical classification datasets,
we used b0:1 � 9D9cþ1, since the feature space of some of these
datasets is large (several thousands of features, see Table 5) and the
logarithmic function is under-sampling the feature space (e.g., it will
select 14 attributes from 10000 descriptive attributes).

On the datasets with multiple targets, the predictive perfor-
mance of the algorithms is estimated by 10-fold cross-validation.
The hierarchical datasets were previously divided (by the data
providers) into train and test sets. Thus, we estimate the pre-
dictive performance of the algorithms on the test sets.

We adopt the recommendations by Demšar [56] for the
statistical evaluation of the results. We use the Friedman test
[57] for statistical significance with the correction from Iman and
Davenport [58]. Afterwards, to check where the statistically
significant differences appear (between which algorithms), we
use the Nemenyi post hoc test [59]. We present the results from
the statistical analysis with average ranks diagrams [56]. The
diagrams plot the average ranks of the algorithms and connect
the ones whose average ranks are smaller than a given value,
called critical distance. The critical distance depends on the level
of the statistical significance, in our case 0.05. The difference in
the performance of the algorithms connected with a line is not
statistically significant at the given significance level.
5. Results and discussion

The results from the experiments can be analyzed along
several dimensions. First, we present the saturation curves of
the ensemble methods (both for predicting the structured outputs
and the components of the outputs). We also compare single trees
vs. ensembles of trees. Next, we compare models that predict the
complete structured output vs. models that predict components
of the structured output. Finally, we evaluate the algorithms
by their efficiency in terms of running time and model size.

6 5 4 3 2 1

RF MT 50@2.53

RF ST 50@2.61

Bag MT 50@2.81

Bag ST 50@3.11PCT MT@4.88

PCT ST@5.06

Critical Distance = 0.901

Fig. 4. Average rank diagrams (with the critical distance at a significance level of

0.05) for the prediction of multiple continuous targets. The differences in

performance of the algorithms connected with a line are not statistically

significant. The number after the name of an algorithm indicates its average rank.

The abbreviations are the same as in Fig. 3, with the addition of single predictive

clustering tree, PCT.

0.54

0.545

0.55

0.555

0.56

0.565

0.57

R
R

M
SE

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Size of ensemble

Bag MT
Bag ST
RF MT
RF ST

0.7

0.71

0.72

0.73

0.74

0.75

R
R

M
SE

Size of ensemble

Bag MT
Bag ST
RF MT
RF ST

0.69

0.695

0.7

0.705

0.71

0.715

0.72

R
R

M
SE

Size of ensemble

Bag MT
Bag ST
RF MT
RF ST

Fig. 3. Saturation curves for the different ensemble approaches to the prediction of multiple continuous targets. The curves (a) and (b) are obtained by averaging the

RRMSE values over all of the target variables in a dataset, while the curve (c) by averaging the RRMSE values over all of the target variables in all datasets. Smaller RRMSE

values mean better predictive performance. Note that the scale of the y-axis is adapted for each curve. The algorithm names are abbreviated as follows: bagging,

Bag; random forests, RF; multi-target prediction, MT; single-target prediction, ST. (a) Forestry-Kras, (b) soil quality, and (c) overall.

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833826
We perform these comparisons for each task separately: multi-
target regression, multi-target classification and hierarchical
multi-label classification. We conclude the section with a general
discussion of the experimental results.
5.1. Multi-target regression

In Fig. 3, we present the saturation curves for the ensemble
methods for multi-target regression. Although these curves are
averaged across all target variables for a given dataset, they still
provide useful insight into the performance of the algorithms.
Fig. 3(a) and (b) presents the saturation curves for two specific
datasets, while Fig. 3(c) presents curves averaged across all
datasets. We have checked at which ensemble size (saturation
point) the RRMSE no longer statistically significantly changes, i.e.,
when adding trees to the ensemble does not increase the
predictive performance significantly. For all algorithms, the dif-
ferences are not statistically significant after 50 trees are added.
4 3 2 1

RF MT 50@1.07

Bag MT 50@2.29RF ST 50@2.71
Bag ST 50@3.93

Critical Distance
= 1.254

Fig. 5. Efficiency (running time and model size) of the ensembles for prediction of mu

and (b) size of the models.
Thus, in the remainder of the analysis, we use ensembles of
50 trees are added to the ensembles.

The statistical test in Fig. 4 shows that the differences in
predictive performance among the different ensemble methods
are not statistically significant at the level of 0.05. For most of the
datasets, the best performing method is random forests for
predicting multiple targets. However, if we look at the saturation
curves in Fig. 3(c), we note that, on average, multiple target
bagging is best. A closer look at the results shows that, especially
for the larger datasets (e.g., Forestry-Kras from Fig. 3(a)), random
forests tend to outperform bagging, both for the local and global
algorithms. The difference in performance between ensembles
and single PCTs is statistically significant. The PCTs for predicting
multiple targets simultaneously are better (though not signifi-
cantly) than the trees for predicting multiple targets separately.

Finally, we compare the algorithms by their running time and the
size of the models for ensembles of 50 trees (see Fig. 5). The statistical
tests show that, in terms of the time efficiency, random forests for
multi-target regression significantly outperform ensemble methods
predicting the targets separately. Also, bagging for multiple targets is
significantly faster than bagging for separate prediction of the targets.
In terms of model size, both random forests and bagging for
predicting multiple targets simultaneously outperform significantly
the ensembles that predict multiple targets separately.

5.2. Multi-target classification

In Fig. 6, we present three saturation curves for the ensemble
methods for multi-target classification. As for multi-target regres-
sion, the values depicted in the curves are the averages over all
target variables for a given dataset (and in Fig. 6(c) averaged
across all datasets). As for multi-target regression, we determined
the ensemble size after which the changes in predictive perfor-
mance are no longer significant. The ensembles for predicting the
multiple targets simultaneously saturate with 50 trees added,
while the ensembles for separate prediction of the targets require
more trees: 75 for random forests and 250 for bagging. After this,
we select the ensembles size of 50 (Fig. 7) to compare the
4 3 2 1

RF MT 50@1.39

Bag MT 50@1.64RF ST 50@3.43

Bag ST 50@3.54

Critical Distance
= 1.254

ltiple continuous targets. The size of the ensembles is 50 trees. (a) Time efficiency

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78
F-

sc
or

e

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Size of ensemble

Bag MT
Bag ST
RF MT
RF ST

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

F-
sc

or
e

Size of ensemble

Bag MT
Bag ST
RF MT
RF ST

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

F-
sc

or
e

Size of ensemble

Bag MT
Bag ST
RF MT
RF ST

Fig. 6. Saturation curves for the prediction of multiple discrete targets. The curves (a) and (b) are obtained by averaging the mF-score values over all of the target variables

in a dataset, while the curve (c) by averaging the mF-score values over all of the target variables in all datasets. Higher mF-score values mean better predictive performance.

Note that the scale of the y-axis is adapted for each curve. The algorithm names are abbreviated as follows: bagging, Bag; random forests, RF; multi-target prediction, MT;

single-target prediction, ST. (a) Sigmea real, (b) water quality and (c) overall.

6 5 4 3 2 1

Bag MT 50@2.59

Bag ST 50@3

RF MT 50@3.07

RF ST 50@3.11PCT MT@4.33

PCT ST@4.9

Critical Distance = 0.982

Fig. 7. Average ranks diagrams (with the critical distance at significance level of

0.05) for the prediction of multiple discrete targets. The differences in perfor-

mance of the algorithms connected with a line are not statistically significant. The

number after the name of an algorithm indicates its average rank. The abbrevia-

tions are the same as in Fig. 6, with the addition of single predictive clustering

tree, PCT.

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 827
algorithms. This is in line with the results from the saturation
curves which show that ensembles for multi-target classification
perform better than the ensembles for single-target classification
at smaller ensemble sizes (this can be also noticed in the overall
saturation curve shown in Fig. 6(c)).

The statistical tests reveal that there is no statistically sig-
nificant difference (at the level of 0.05) in the performance of the
ensemble methods (Fig. 7). Bagging for predicting the multiple
targets simultaneously is the best performing method (average
rank 2.59) and the remaining methods have larger average ranks
very close to each other (ranging from 3.0 to 3.11) with random
forest for separate prediction of the targets having the largest
average rank (worst performance). Similar conclusions can be
made if instead of ensembles with 50 trees, we select ensembles
with 75 or 250 trees. The only difference is that in these cases
4 3 2 1

RF MT 50@1

RF ST 50@2.44Bag MT 50@2.56

Bag ST 50@4

Critical Distance
= 1.563

B

R

Fig. 8. Efficiency of the ensembles for predicting multiple discrete targets. The siz
random forests for multiple targets have larger average ranks
(i.e., the difference in performance between random forests for
multiple targets and the other methods is smaller).

Both types of ensembles (multi-target and single-target classifi-
cation) perform statistically significantly better than single PCTs.
Furthermore, single PCTs for multi-target classification perform
better (although not statistically significantly) than the PCTs for
single-target classification.

Finally, we compare the ensembles by their efficiency: running
times (Fig. 8(a)) and size of models (Fig. 8(b)). Concerning the
running time, we can state that random forests for predicting
multiple targets simultaneously significantly outperform bagging
for predicting multiple targets separately. As for the size of the
models, we can note the following: (1) bagging for predicting
multiple targets simultaneously significantly outperforms both
ensemble methods for separate prediction of the targets and
(2) random forests for predicting multiple targets simultaneously
significantly outperform random forests for separate prediction of
the targets.
5.3. Hierarchical multi-label classification

In this subsection, we compare the performance of ensembles
and PCTs for the tasks of HMC and HSC. We begin by presenting
the saturation curves of the ensemble methods in Fig. 9.
Fig. 9(a) and (b) shows the saturation curves for the SCOP-GO

and ImCLEF07D domains, respectively, while Fig. 9(c) shows the
saturation curve averaged across all domains. We determine the
ensemble size after which adding trees in the ensemble does not
statistically significantly improve the ensemble’s performance.
Both types of ensemble methods for HMC and random forests for
HSC saturate after 50 trees are added, while bagging for HSC
saturates after only 25 trees. We further compare the perfor-
mance of the ensembles at 50 trees (Fig. 10).
4 3 2 1

Bag MT 50@1.22

RF MT 50@2ag ST 50@2.89

F ST 50@3.89

Critical Distance
= 1.563

e of the ensembles is 50 trees. (a) Time efficiency and (b) size of the models.

0.8

0.81

0.82

0.83

0.84

0.85

0.86

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Size of ensemble

Bag HMC
Bag HSC
RF HMC
RF HSC

AU
 P

RC

AU
 P

RC

AU
 P

RC

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Size of ensemble

Bag HMC
Bag HSC
RF HMC
RF HSC

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Size of ensemble

Bag HMC
Bag HSC
RF HMC
RF HSC

Fig. 9. Saturation curves for hierarchical multi-label classification. The curves (a) and (b) are obtained by giving the AUPRC value for a dataset, while the curve (c) by

averaging the AUPRC values over all of the datasets. Higher AUPRC values mean better predictive performance. Note that the scale of the y-axis is adapted for each curve.

The algorithm names are abbreviated as follows: bagging, Bag; random forests, RF; hierarchical multi-label classification, HMC; hierarchical single-label classification, HSC.

(a) SCOP-GO, (b) ImCLEF07D, and (c) overall.

6 5 4 3 2 1

RF HSC 50@2.25

Bag HMC 50@2.4

RF HMC 50@2.5

Bag HSC 50@2.85PCT HSC@5.4

PCT HMC@5.6

Critical Distance = 2.384

Fig. 10. Average ranks diagrams (with the critical distance at a significance level

of 0.05) for hierarchical multi–label classification. The differences in the perfor-

mance of algorithms connected with a line are not statistically significant. The

number after the name of an algorithm indicates its average rank. The abbrevia-

tions are the same as in Fig. 9 with the addition of single predictive clustering tree,

PCT.

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833828
The average ranks diagram for the ensembles with 50 trees
(Fig. 10) shows that the performance of the different ensembles is
not statistically significantly different. Note that the best perform-
ing method is random forests for HSC (average rank 2.25) and the
worst performing method is bagging for HSC (average rank 2.85).
Ensembles for HMC and HSC are statistically significantly better
than single PCT for HMC and HSC. However, the overall saturation
curve from Fig. 9(c), indicates that random forests for HMC is the
best performing method. Moreover, ensembles for HMC perform
better than ensembles for HSC on the datasets with larger
hierarchies (i.e., datasets with ð9H94300Þ and in our case the
datasets from functional genomics).

Finally, we compare the algorithms by their efficiency when
they contain 50 trees (running times in Fig. 11(a) and model size
in Fig. 11(b)). The random forests for HMC are statistically
significantly faster than bagging for both HMC and HSC, while
random forests for HSC are significantly faster than bagging for
4 3 2 1

RF HMC 50@1

RF HSC 50@2.3Bag HMC 50@2.8

Bag HSC 50@3.9

Critical Distance
= 1.483

R

Fig. 11. Efficiency of the ensembles for hierarchical multi-label classifications. The s
HSC. The models of bagging of HMC are statistically significantly
smaller than the models from both types of ensembles for HSC,
while the random forests for HMC are statistically significantly
smaller than the random forests for HSC.

5.4. Summary of the results

To summarize the results from the experiments, we discuss
some general conclusions by formulating an answer to each of the
questions from Section 4.1.

5.4.1. Predictive performance

The ensembles of PCTs for predicting structured outputs lift
the predictive performance of a single PCT for predicting struc-
tured outputs. The difference in performance is statistically
significant at the significance level of 0.05. This was previously
shown only on applications where the target is a single contin-
uous or discrete variable [12]. This finding is valid for all three
machine learning tasks that we consider in this paper. The
differences in predictive performance between ensembles of PCTs
and ensembles of trees predicting components of the output are
not statistically significant (at the 0.05 level) in any task. Also,
none of the four considered ensemble algorithms is consistently
performing best. However, the ensembles of PCTs often have
better predictive performance (i.e., smaller average ranks) than
the ensembles of trees predicting components of the output.

5.4.2. Convergence

We looked at the saturation point of the ensembles’ perfor-
mances with respect to the number of base classifiers. In the
majority of the cases, the predictive performance of the ensem-
bles saturates after the 50th tree is added in the ensemble.
Exceptions to this are bagging for HSC that saturates when 25
trees are added and random forests and bagging for predicting
multiple discrete targets separately that saturate after 75 and 250
trees, respectively. Furthermore, the saturation curves offer some
insight about the application of a given method on a group of
4 3 2 1

Bag HMC 50@1.1

RF HMC 50@1.9Bag HSC 50@3

F HSC 50@4

Critical Distance
= 1.483

ize of the ensembles is 50 trees. (a) Time efficiency and (b) size of the models.

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 829
datasets (summarized by their number of examples and number
of descriptive variables). Also, the curves show that on the
majority of the datasets, the ensembles of PCTs for predicting
the structured outputs as a whole have better performance than
the ensembles that predict the components. This is especially the
case when the ensembles contain fewer trees.

5.4.3. Efficiency

With respect to model size and induction times, the tree
ensembles that exploit the structure do have a significant advan-
tage. The advantage is more pronounced when the datasets
have large numbers of instances and/or descriptive attributes.
Moreover, because of the feature sampling, the random forests
for predicting structured outputs benefit even more, in terms
of induction time, when the datasets have many descriptive
attributes.

By averaging over all datasets considered in this study, we find
that random forests for predicting the complete structured
outputs are four times faster to construct and the models are
3.4 times smaller than a collection of random forests for predicting
single targets or labels. In addition, they are 5.5 times faster
to construct and have models with similar size as bagging for
predicting the complete structured output. Furthermore, the
latter is 3.9 times faster and yields models that are 2.9 times
smaller than a collection of bagged trees for predicting single
targets or labels.
6. Related work

The task of predicting structured outputs is gaining more and
more attention within the machine learning research community
[4,3]. The community has proposed a number of different methods
for addressing this task. However, they are typically ‘‘computation-
ally demanding and ill-suited for dealing with large datasets’’ [4].
In this paper, we have proposed a global method for predicting
structured outputs that has good predictive performance and is
very efficient: it scales linearly with the size of the output. We used
the predictive clustering framework both for predicting multi-
ple targets and for hierarchical multi-label classification. In the
literature, individual methods typically solve only one task: only
predicting multiple discrete variables (multi-target classification),
only predicting multiple continuous variables (multi-target regres-
sion), or hierarchical multi-label classification only. In the remain-
der of this section, we first present the methods that predict
multiple targets and then the methods for hierarchical multi-label
classification.

6.1. Methods for multi-target prediction

The task of predicting multiple targets is connected with multi-

task learning [60] and learning to learn [61] paradigms. These
paradigms include the task of predicting a variable (continuous or
discrete) using multiple input spaces (i.e., biological data for a
disease obtained using different technologies); predicting multi-
ple variables from multiple input spaces, and predicting multiple
variables from a single input space. Here, we consider the last
task. There is extensive empirical work showing an increase in
predictive performance when multiple tasks are learned simulta-
neously as compared to learning each task separately (for exam-
ple, see [62–65] and the references therein).

The key for the success of multi-task learning is the relatedness

between the multiple tasks. The notion of relatedness is differently
perceived and defined by different researchers. For example, Ando
et al. [66] assume that all related tasks have some common hidden
structure. Greene [67] models the relatedness under the assumption
of correlation between the noise for the different regression esti-
mates. Baxter [62] views the similarity through a model selection
criterion, i.e., learning multiple tasks simultaneously is beneficial if
the tasks share a common optimal hypothesis space. To this end, a
generalized VC-dimension is used for bounding the average empiri-
cal error of a set of predictive models over a class of tasks.
Furthermore, Chang et al. [68] adaptively learn the non-parametric
common structure of the multiple tasks. Namely, the proposed
algorithm iteratively discovers super-features effective for all the
tasks. The estimation of the regression function for each task is then
learned as a linear combination of these super-features. Similarly,
Hernández-Lobato et al. [69] use (efficiently parametrized) expecta-
tion propagation to approximate the posterior distribution of the
model to identify relevant features for predicting all the tasks.

We present and categorize the related work in four groups:
statistics, statistical learning theory, Bayesian theory and kernel
learning. In statistics, Brown and Zidek [70] extend the standard
ridge regression to multivariate ridge regression, while Breiman
and Friedman [71] propose the Curds&Whey method, where the
relations between the task are modeled in a post-processing
phase. In statistical learning theory, for handling multiple tasks,
an extension of the VC-dimension and the basic generalization
bounds for single task learning are proposed by Baxter [62] and
Ben-David and Borbely [65].

Most of the work in multi-task learning is done using Bayesian
theory [61,72,73]. In this case, simultaneously with the para-
meters of the models for each of the tasks, a probabilistic model
that captures the relations between the various tasks is being
calculated. Most of these approaches use hierarchical Bayesian
models.

Finally, there are many approaches for multi-task learning
using kernel methods. For example, Evgeniou et al. [63] extend
the kernel methods to the case of multi-task learning using a
particular type of kernel (multi-task kernel). The regularized
multi-task learning then becomes equivalent to single-task learn-
ing when such a kernel is used. They show experimentally that
the support vector machines (SVMs) with multi-task kernels have
significantly better performance than the ones with single-task
kernels. Liu et al. [74] proposed an approach to define the loss
functions on the output manifold by considering it as a Rieman-
nian submanifold in order to include its geometric structure in
the learning (regression) process. The proposed approach can be
used in the context of any regression algorithm and the experi-
mental evaluation using regression SVMs provided satisfactory
results. For more details on kernel methods and SVMs for multi-
task learning, we refer the reader to [64,75–77] and the references
therein.

6.2. Methods for hierarchical multi-label classification

A number of approaches have been proposed for the task of
hierarchical multi-label classification [4]. Silla and Freitas [3]
survey and categorize the HMC methods based on some of their
characteristics and their application domains. The characteristics
of the methods they consider as most important are: prediction of
single or multiple paths from the hierarchy, the depth of the
predicted class, the type of the taxonomy that can be handled
(tree or directed acyclic graph) and whether the method is local
(constructs a model for each part of the taxonomy) or global
(constructs a model for the whole taxonomy). The most promi-
nent application domains for these methods are functional
genomics (biology), image classification and text categorization.

Here, we present and group some existing methods based
on the learning technique they use. We group the methods
as follows: network based methods, kernel based methods and
decision tree based methods.

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833830
Network based methods: The network based approaches
predict functions of unannotated genes based on known functions
of genes that are nearby in a functional association network or
protein-protein interaction network [78]. Since the network
based approaches are based on label propagation, a number of
approaches were proposed to combine predictions of functional
networks with those of a predictive model. Tian et al. [79], for
instance, use logistic regression to combine predictions made by a
functional association network with predictions from a random
forest.

Kernel based methods: Obozinski et al. [80] present a two-
step approach in which SVMs are first learned independently for
each class separately (allowing violations of the hierarchy con-
straint) and are then reconciliated to enforce the hierarchy
constraint. Similarly, Barutcuoglu et al. [54] use un-thresholded
SVMs learned for each class separately and then combine the
SVMs using a Bayesian network so that the predictions are
consistent with the hierarchical relationships. Guan et al. [81]
extend the method by Barutcuoglu et al. [54] to an ensemble
framework. Valentini and Re [82] also propose a hierarchical
ensemble method that uses probabilistic SVMs as base learners.
The method combines the predictions by propagating the
weighted true path rule both top-down and bottom-up through
the hierarchy, which ensures consistency with the hierarchy
constraint. Next, Dı́ez et al. [83] proposed a semi-dependent
decomposition approach in which the node classifiers (binary
SVMs) are constructed considering the other classifiers, their
descendants and the loss function used to estimate the perfor-
mance of the hierarchical classifiers. This approach follows a
bottom-up strategy with the aim to optimize the loss function at
every subtree assuming that all classifiers are known, except the
one at the root of the hierarchy.

Rousu et al. [53] present a more direct method that does not
require a second step to make sure that the hierarchy constraint is
satisfied. Their approach is based on a large margin method for
structured output prediction which defines a joint feature map
over the input and the output space. Next, it applies SVM based
techniques to learn the weights of a discriminant function
(defined as the dot product of the weights and the joint feature
map). Rousu et al. [53] propose a suitable joint feature map and
an efficient way for computing the argmax of the discriminant
function (which is the prediction for a new instance). Further-
more, Gärtner and Vembu [34] propose to use counting of super-
structures from the output to efficiently calculate (in polynomial
time) the argmax of the discriminant function.

Decision tree based methods: Clare [24] adapts the well-
known decision tree algorithm C4.5 [23] to cope with the issues
introduced by the HMC task. This version of C4.5 (called C4.5H)
uses the sum of entropies of the class variables to select the best
split. C4.5H predicts classes on several levels of the hierarchy,
assigning a larger cost to misclassifications higher up in the
hierarchy. The resulting tree is then transformed into a set of
rules, and the best rules are selected, based on a significance test
on a validation set.

Geurts et al. [84] present a decision tree based approach
related to predictive clustering trees. They start from a different
definition of variance and then kernelize this variance function.
The result is a decision tree induction system that can be applied
to structured output prediction using a method similar to the
large margin methods mentioned above. Therefore, this system
could also be used for HMC after defining a suitable kernel. To this
end, an approach similar to that of Rousu et al. [53] could be used.

The present work follows Blockeel et al. [85,14], who proposed
the idea of using predictive clustering trees [5] for HMC tasks (PCTs
for HMC). Their work [14] presents the first thorough empirical
comparison between an HMC decision tree method in the context of
tree shaped class hierarchies. Vens et al. [8] extend the algorithm
towards hierarchies structured as directed acyclic graphs (DAGs)
and show that learning one decision tree for predicting all classes
simultaneously outperforms learning one tree per class (even if
those trees are built by taking into account the hierarchy, via so-
called hierarchical single-label classification—HSC).
7. Conclusions

In this paper, we address the task of learning predictive
models for structured output learning, which takes as input a
tuple of attribute values and produces a structured object. In
contrast to standard classification and regression, where the
output is a single scalar value, in structured output learning the
output is a data structure, such as a tuple or a directed acyclic
graph. We consider both global and local prediction of structured
outputs, the former based on a single model that predicts the
entire output structure and the latter based on a collection of
models, each predicting a component of the output structure.

In particular, we take the notion of an ensemble, i.e., a
collection of predictive models whose predictions are combined,
and apply it in the context of predicting structured outputs.
Ensembles have proved to be highly effective methods for
improving the predictive performance of their constituent mod-
els, especially for classification tree models. We propose in this
paper to build ensemble models consisting of predictive cluster-
ing trees, which generalize classification trees. We use them for
predicting different types of structured outputs, both locally and
globally.

More specifically, we develop methods for learning different
types of ensembles of predictive clustering trees for global and
local prediction of different types of structured outputs. The types
of outputs considered correspond to different predictive modeling
tasks, i.e., multi-target regression, multi-target classification, and
hierarchical multi-label classification. The different types of
ensembles include bagging and random forests. Each of the
combinations can be applied both in the context of global
prediction (producing a single ensemble) or local prediction
(producing a collection of ensembles).

We conduct an extensive experimental evaluation of bagging
and random forests across a range of benchmark datasets for each
of the three types of structured outputs. We compare tree
ensembles for global and local prediction, as well as single trees
for global prediction and tree collections for local prediction, both
in terms of predictive performance and in terms of efficiency
(running times and model complexity). Both global and local tree
ensembles perform better than the single model counterparts in
terms of predictive power. Global and local tree ensembles per-
form equally well, with global ensembles being more efficient and
producing smaller models, as well as needing fewer trees in the
ensemble to achieve the maximal performance.

We also analyse the computational complexity of the methods
theoretically. The theoretical analyses are consistent with the
empirical evidence, showing that the global tree ensembles are
most efficient, especially random forests. The analyses also
indicate that the proposed approaches are scalable to large
datasets, which can be large along any of the following dimen-
sions: number of attributes, number of examples, and size of the
target.

Several directions for further work deserve a mention. The
presented methods for learning ensembles can be extended to
other types of structured outputs (e.g., time series or tuples
of mixed primitive data types, both continuous and discrete).
Also, other distance measures for structured types can be

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 831
implemented, thus making the algorithms more flexible and
applicable to new domains.

Another line of further work is to use global random forests for
obtaining feature ranking for structured outputs. To produce a
feature ranking for a structured output, a feature ranking is
typically performed first for each component of the output
separately: these rankings are then merged using some aggrega-
tion function. The feature ranking based on global random forests
can exploit the underlying dependencies and relations that may
exist between the components of the outputs. Thus, it will
provide feature rankings that are more relevant for the complete
output rather than a component of it. Furthermore, it will be
easily extended to a generic type of structured output.

Acknowledgment

We would like to thank Valentin Gjorgjioski for the discussions
concerning the computational complexity of the proposed
methods. Celine Vens is a post-doctoral fellow of the Research
Fund—Flanders (FWO—Vlaanderen). The work of Dragi Kocev
and Sašo Džeroski was supported by the Slovenian Research
Agency (Grants P2-0103 and J2-2285), the European Commission
(Grants ICT-2010-266722 and ICT-2011-287713), and Operation
no. OP13.1.1.2.02.0005 nanced by the European Regional Devel-
opment Fund (85%) and the Ministry of Education, Science,
Culture and Sport of Slovenia (15%).

Appendix A. Performance measures for classification

Nomenclature:

ci class value
T number of classes
TPi true positives for class ci

FPi false positives for class ci

FNi false negatives for class ci

TNi true negatives for class ci

Pi precision for class ci

Ri recall for class ci

F F-score
MCC Matthews correlation coefficient
BACC balanced accuracy
DP discriminant power

Table A1
Evaluation measures—general definitions.
Measure
 Formula
Precision

P ¼

TP

TPþFP

Recall
R¼
TP

TPþFN

F-score
F ¼ 2 �
P � R

PþR

MCC
MCC¼
TP � TN�FP � FNffi

ðTPþFPÞ � ðTPþFNÞ � ðTNþFPÞ � ðTNþFNÞ
p

� �

BACC
BACC¼
sensitivityþspecificity

2
¼

1

2
�

TP

TPþFN
þ

TN

TNþFP
DP

DP¼

ffiffiffi
3
p

p � ln
TP

FP
�

TN

FN

� �
Note: The formula for discriminant power is DP¼ ð
ffiffiffi
3
p

=pÞ � ðln Xþ ln YÞ, where

X ¼ sensitivity= ð1�sensitivityÞ, Y ¼ specificity=ð1�specificityÞ, sensitivity¼ TP=

ðTPþFNÞ and specificity¼ TN=ðTNþFPÞ.
Table A2

Micro averaged evaluation measures.
Measure
 Formula
mPrecision

PT

i TPiPT
i TPiþ

PT
i FPi
mRecall

PT

i TPiPT
i TPiþ

PT
i FNi
mF-score

2 �

Pmi � R
m
i

Pmi þRm
i

mMCC

PT

i TPi �
PT

i TNi�
PT

i FPi �
PT

i FNiffi
ð
PT

i TPiþ
PT

i FPiÞ � ð
PT

i TPiþ
PT

i FNiÞ � ð
PT

i TNiþ
PT

i FPiÞ � ð
PT

i TNiþ
PT

i FNiÞ

q
 !
mBACC
 1

2
�

PT
i TPiPT

i TPiþ
PT

i FNi

þ

PT
i TNiPT

i TNiþ
PT

i FPi !

mDP
ffiffiffi
3
p

p
� ln

PT
i TPiPT
i FPi

�

PT
i TNiPT
i FNi
Table A3
Macro averaged evaluation measures.
Measure
 Formula
M Precixion
 PT
i

Pi
M Recall
 PT
i

Ri
MF-score
 PT
i

Fi
M MCC
 PT
i

MCCi
M BACC
 PT
i

BACCi
M DP
 PT
i

DPi
References

[1] Q. Yang, X. Wu, 10 challenging problems in data mining research, Interna-
tional Journal of Information Technology & Decision Making 5 (4) (2006)
597–604.

[2] H.-P. Kriegel, K. Borgwardt, P. Kröger, A. Pryakhin, M. Schubert, A. Zimek,
Future trends in data mining, Data Mining and Knowledge Discovery 15
(2007) 87–97.

[3] C. Silla, A. Freitas, A survey of hierarchical classification across different
application domains, Data Mining and Knowledge Discovery 22 (1–2) (2011)
31–72.

[4] G.H. Bakır, T. Hofmann, B. Schölkopf, A.J. Smola, B. Taskar, S.V.N. Vishwa-
nathan, Predicting Structured Data, Neural Information Processing, The MIT
Press, 2007.

[5] H. Blockeel, L.D. Raedt, J. Ramon, Top-down induction of clustering trees, in:
Proceedings of the 15th International Conference on Machine Learning,
Morgan Kaufmann, 1998, pp. 55–63.

[6] J. Struyf, S. Džeroski, Constraint based induction of multi-objective regression
trees, in: Proceedings of the 4th International Workshop on Knowledge
Discovery in Inductive Databases KDID, Lecture Notes in Computer Science,
vol. 3933, Springer, 2006, pp. 222–233.

[7] D. Kocev, C. Vens, J. Struyf, S. Džeroski, Ensembles of multi-objective decision
trees, in: ECML ’07: Proceedings of the 18th European Conference on Machine
Learning, Lecture Notes in Computer Science, vol. 4701, Springer, 2007,
pp. 624–631.

[8] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, H. Blockeel, Decision trees for
hierarchical multi-label classification, Machine Learning 73 (2) (2008)
185–214.

[9] I. Slavkov, V. Gjorgjioski, J. Struyf, S. Džeroski, Finding explained groups of
time-course gene expression profiles with predictive clustering trees, Mole-
cular Biosystems 6 (4) (2010) 729–740.

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833832
[10] L. Breiman, J. Friedman, R. Olshen, C.J. Stone, Classification and Regression
Trees, Chapman & Hall/CRC, 1984.

[11] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.
[12] G. Seni, J.F. Elder, Ensemble Methods in Data Mining: Improving Accuracy

through Combining Predictions, Morgan and Claypool Publishers, 2010.
[13] E. Bauer, R. Kohavi, An empirical comparison of voting classification algo-

rithms: bagging, boosting, and variants, Machine Learning 36 (1) (1999)
105–139.

[14] H. Blockeel, L. Schietgat, J. Struyf, S. Džeroski, A. Clare, Decision trees for
hierarchical multilabel classification: a case study in functional genomics, in:
Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer
Science, vol. 4213, Springer, 2006, pp. 18–29.

[15] L.K. Hansen, P. Salamon, Neural network ensembles, IEEE Transactions on
Pattern Analysis and Machine Intelligence 12 (10) (1990) 993–1001.

[16] A. Verikas, A. Gelzinis, M. Bacauskiene, Mining data with random forests: a
survey and results of new tests, Pattern Recognition 44 (2) (2011) 330–349.

[17] L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev, S. Džeroski, Predicting
gene function using hierarchical multi-label decision tree ensembles, BMC
Bioinformatics 11 (2) (2010) 1–14.

[18] S. Džeroski, V. Gjorgjioski, I. Slavkov, J. Struyf, Analysis of time series data with
predictive clustering trees, in: Knowledge Discovery in Inductive Databases,
5th International Workshop, KDID 2006, Revised Selected and Invited Papers,
Lecture Notes in Computer Science, vol. 4747, Springer, 2007, pp. 63–80.

[19] D. Demšar, S. Džeroski, T. Larsen, J. Struyf, J. Axelsen, M. Bruns-Pedersen,
P.H. Krogh, Using multi-objective classification to model communities of soil,
Ecological Modelling 191 (1) (2006) 131–143.

[20] G. Tsoumakas, I. Katakis, Multi label classification: an overview, International
Journal of Data Warehouse and Mining 3 (3) (2007) 1–13.

[21] P. Langley, Elements of Machine Learning, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1996.

[22] H. Blockeel, J. Struyf, Efficient algorithms for decision tree cross-validation,
Journal of Machine Learning Research 3 (2002) 621–650.

[23] R.J. Quinlan, C4.5: Programs for Machine Learning, 1st ed., Morgan Kauf-
mann, 1993.

[24] A. Clare, Machine Learning and Data Mining for Yeast Functional Genomics,
Ph.D. Thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK,
2003.

[25] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley-
Interscience, 2004.

[26] H. Zouari, L. Heutte, Y. Lecourtier, Controlling the diversity in classifier
ensembles through a measure of agreement, Pattern Recognition 38 (11)
(2005) 2195–2199.

[27] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in:
Proceedings of the 13th International Conference on Machine Learning—ICML,
Morgan Kaufman, 1996, pp. 148–156.

[28] L. Breiman, Using iterated bagging to debias regressions, Machine Learning
45 (3) (2001) 261–277.

[29] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
[30] T.K. Ho, The random subspace method for constructing decision forests, IEEE

Transactions on Pattern Analysis and Machine Intelligence 20 (8) (1998) 832–844.
[31] T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of

the 1st International Workshop on Multiple Classifier Systems, Lecture Notes
in Computer Science, vol. 1857, Springer, 2000, pp. 1–15.

[32] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, Morgan Kaufmann, 2005.

[33] Intel, Intels SSE4 Programming Reference, D91561-003 Edition, 2007.
[34] T. Gärtner, S. Vembu, On structured output training: hard cases and an

efficient alternative, Machine Learning 76 (2009) 227–242.
[35] C. Kampichler, S. Džeroski, R. Wieland, Application of machine learning

techniques to the analysis of soil ecological data bases: relationships
between habitat features and Collembolan community characteristics, Soil
Biology and Biochemistry 32 (2) (2000) 197–209.

[36] A. Karalič, First Order Regression, Ph.D. Thesis, Faculty of Computer Science,
University of Ljubljana, Ljubljana, Slovenia, 1995.

[37] D. Stojanova, P. Panov, V. Gjorgjioski, A. Kobler, S. Džeroski, Estimating
vegetation height and canopy cover from remotely sensed data with machine
learning, Ecological Informatics 5 (4) (2010) 256–266.

[38] D. Stojanova, Estimating Forest Properties from Remotely Sensed Data by
using Machine Learning, Master’s Thesis, Jožef Stefan International Post-
graduate School, Ljubljana, Slovenia, 2009.

[39] D. Demšar, M. Debeljak, S. Džeroski, C. Lavigne, Modelling pollen dispersal of
genetically modified oilseed rape within the field, in: The Annual Meeting of
the Ecological Society of America, 2005.

[40] A. Asuncion, D. Newman, UCI—Machine Learning Repository /http://www.
ics.uci.edu/�mlearn/MLRepository.htmlS, 2007.

[41] V. Gjorgjioski, S. Džeroski, M. White, Clustering Analysis of Vegetation Data,
Technical Report 10065, Jožef Stefan Institute, 2008.

[42] D. Kocev, S. Džeroski, M. White, G. Newell, P. Griffioen, Using single- and
multi-target regression trees and ensembles to model a compound index of
vegetation condition, Ecological Modelling 220 (8) (2009) 1159–1168.

[43] H. Blockeel, S. Džeroski, J. Grbović, Simultaneous prediction of multiple
chemical parameters of river water quality with TILDE, in: Proceedings of
the 3rd European Conference on PKDD, LNAI 1704, Springer, 1999, pp. 32–40.

[44] S. Džeroski, D. Demšar, J. Grbović, Predicting chemical parameters of
river water quality from bioindicator data, Applied Intelligence 13 (1)
(2000) 7–17.
[45] K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas, Multilabel classifi-
cation of music into emotions, in: Proceedings of the 9th Inter-
national Conference on Music Information Retrieval (ISMIR 2008), 2008,
pp. 325–330.

[46] M. Skrjanc, M. Grobelnik, D. Zupanic, Insights offered by data-mining when
analyzing media space data, Informatica (Slovenia) 25 (3) (2001) 357–363.

[47] M. Boutell, J. Luo, X. Shen, C. Brown, Learning multi-label scene classification,
Pattern Recognition 37 (9) (2004) 1757–1771.

[48] A. Elisseeff, J. Weston, A kernel method for multi-labelled classification, in:
Advances in Neural Information Processing Systems, vol. 14, MIT Press, 2001,
pp. 681–687.

[49] I. Dimitrovski, D. Kocev, S. Loskovska, S. Džeroski, Hierchical annotation of
medical images, in: Proceedings of the 11th International Multiconference—

Information Society (IS 2008), IJS, Ljubljana, 2008, pp. 174–181.
[50] ADIAC, Automatic Diatom Identification and Classification /http://rbg-web2.

rbge.org.uk/ADIAC/S, 2008.
[51] B. Klimt, Y. Yang, The enron corpus: a new dataset for email classification

research, in: ECML ’04: Proceedings of the 18th European Conference on
Machine Learning, Lecture Notes in Computer Science, vol. 3201, Springer,
2004, pp. 217–226.

[52] D.D. Lewis, Y. Yang, T.G. Rose, F. Li, RCV1: a new benchmark collection for
text categorization research, Journal of Machine Learning Research 5 (2004)
361–397.

[53] J. Rousu, C. Saunders, S. Szedmak, J. Shawe-Taylor, Kernel-based learning of
hierarchical multilabel classification models, Journal of Machine Learning
Research 7 (2006) 1601–1626.

[54] Z. Barutcuoglu, R.E. Schapire, O.G. Troyanskaya, Hierarchical multi-label
prediction of gene function, Bioinformatics 22 (7) (2006) 830–836.

[55] M. Sokolova, G. Lapalme, A systematic analysis of performance measures for
classification tasks, Information Processing & Management 45 (4) (2009)
427–437.

[56] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

[57] M. Friedman, A comparison of alternative tests of significance for the
problem of m rankings, Annals of Mathematical Statistics 11 (1940) 86–92.

[58] R.L. Iman, J.M. Davenport, Approximations of the critical region of the
Friedman statistic, Communications in Statistics—Theory and Methods 9
(6) (1980) 571–595.

[59] P.B. Nemenyi, Distribution-free Multiple Comparisons, Ph.D. Thesis, Prince-
ton University, Princeton, NY, USA, 1963.

[60] R. Caruana, Multitask learning, Machine Learning 28 (1997) 41–75.
[61] S. Thrun, L. Pratt, Learning to Learn, Kluwer Academic Publishers, 1998.
[62] J. Baxter, A model of inductive bias learning, Journal of Artificial Intelligence

Research 12 (2000) 149–198.
[63] T. Evgeniou, C.A. Micchelli, M. Pontil, Learning multiple tasks with kernel

methods, Journal of Machine Learning Research 6 (2005) 615–637.
[64] A. Caponnetto, C.A. Micchelli, M. Pontil, Y. Ying, Universal multi-task kernels,

Journal of Machine Learning Research 9 (2008) 1615–1646.
[65] S. Ben-David, R.S. Borbely, A notion of task relatedness yielding prov-

able multiple-task learning guarantees, Machine Learning 73 (3) (2008) 273–287.
[66] R.K. Ando, T. Zhang, P. Bartlett, A framework for learning predictive

structures from multiple tasks and unlabeled data, Journal of Machine
Learning Research 6 (2005) 1817–1853.

[67] W.H. Greene, Econometric Analysis, 6th ed., Prentice Hall, 2007.
[68] Y. Chang, J. Bai, K. Zhou, G.-R. Xue, H. Zha, Z. Zheng, Multi-task learning to

rank for web search, Pattern Recognition Letters 33 (2) (2012) 173–181.
[69] D. Hernández-Lobato, J. Hernández-Lobato, T. Helleputte, P. Dupont, Expec-

tation propagation for Bayesian multi-task feature selection, in: ECML ’10:
Proceedings of the 21st European Conference on Machine Learning, Lecture
Notes in Computer Science, vol. 6321, Springer, 2010, pp. 522–537.

[70] P.J. Brown, J.V. Zidek, Adaptive multivariate ridge regression, The Annals of
Statistics 8 (1) (1980) 64–74.

[71] L. Breiman, J. Friedman, Predicting multivariate responses in multiple linear
regression, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 59 (1) (1997) 3–54.

[72] B. Bakker, T. Heskes, Task clustering and gating for Bayesian multitask
learning, Journal of Machine Learning Research 4 (2003) 83–99.

[73] A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task reinforcement learning: a
hierarchical Bayesian approach, in: ICML ’07: Proceedings of the 24th
International Conference on Machine Learning, ACM, 2007, pp. 1015–1022.

[74] G. Liu, Z. Lin, Y. Yu, Multi-output regression on the output manifold, Pattern
Recognition 42 (11) (2009) 2737–2743.

[75] A. Argyriou, T. Evgeniou, M. Pontil, Convex multi-task feature learning,
Machine Learning 73 (2008) 243–272.

[76] C.A. Micchelli, M. Pontil, Kernels for multi-task learning, in: Advances in
Neural Information Processing Systems 17—Proceedings of the 2004 Con-
ference, 2004, pp. 921–928.

[77] F. Cai, V. Cherkassky, SVMþ regression and multi-task learning, in: Interna-
tional Joint Conference on Neural Networks (IJCNN), 2009, pp. 418–424.

[78] Y. Chen, D. Xu, Global protein function annotation through mining genome-
scale data in yeast Saccharomyces cerevisiae, Nucleic Acids Research 32 (21)
(2004) 6414–6424.

[79] W. Tian, L.V. Zhang, M. Tas-an, F.D. Gibbons, O.D. King, J. Park, Z. Wunderlich,
J.M. Cherry, F.P. Roth, Combining guilt-by-association and guilt-by-profiling
to predict Saccharomyces cerevisiae gene function, Genome Biology 9 (S1)
(2008) S7þ .

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://rbg-web2.rbge.org.uk/ADIAC/
http://rbg-web2.rbge.org.uk/ADIAC/

D. Kocev et al. / Pattern Recognition 46 (2013) 817–833 833
[80] G. Obozinski, G. Lanckriet, C. Grant, M.I. Jordan, W.S. Noble, Consistent
probabilistic outputs for protein function prediction, Genome Biology 9
(S1) (2008) S6þ .

[81] Y. Guan, C.L. Myers, D.C. Hess, Z. Barutcuoglu, A.A. Caudy, O.G. Troyanskaya,
Predicting gene function in a hierarchical context with an ensemble of
classifiers, Genome Biology 9 (S1) (2008) S3þ .

[82] G. Valentini, M. Re, Weighted true path rule: a multilabel hierarchical algorithm
for gene function prediction, in: Proceedings of the 1st International Workshop on
Learning from Multi-Label Data, 2009, pp. 133–146.

[83] J. Dı́ez, J.J. del Coz, A. Bahamonde, A semi-dependent decomposition
approach to learn hierarchical classifiers, Pattern Recognition 43 (11)
(2010) 3795–3804.
[84] P. Geurts, L. Wehenkel, F. D’Alché-Buc, Kernelizing the output of tree-based
methods, in: ICML ’06: Proceedings of the 23rd International Conference on
Machine Learning, ACM, 2006, pp. 345–352.

[85] H. Blockeel, M. Bruynooghe, S. Džeroski, J. Ramon, J. Struyf, Hierarchical
multi-classification, in: KDD-2002 Workshop Notes: MRDM 2002, Workshop

on Multi-relational Data Mining, 2002, pp. 21–35.
[86] Džeroski S. Towards a general framework for data mining. in: Džzeroski S.,

Struyf J. (Eds.). Knowledge Discovery in Inductive Databases, 5th Interna-
tional Workshop, KDID 2006, Revised Selected and Invited Papers, vol. 4747,
2007, pp. 259–300.
Dragi Kocev received his Ph.D. degree in computer science from the IPS Jozef Stefan in 2011. He is currently a post-doctoral researcher at the Department of Knowledge
Technologies, Jozef Stefan Institute, Ljubljana, Slovenia. His research interests include machine learning and data mining, prediction of structured outputs and their
applications in environmental and life sciences.
Celine Vens received her Ph.D. in applied sciences from the Katholieke Universiteit Leuven, Belgium. She is a post-doctoral fellow of the Research Foundation—Flanders
(FWO) and she is working at the Declarative Languages and Artificial Intelligence Research Group at the Department of Computer Science of the K.U. Leuven University in
Leuven, Belgium. Her research interests include machine learning, (relational) data mining, and applications thereof in bioinformatics and other domains.
Jan Struyf received his Ph.D. in applied sciences from the Katholieke Universiteit Leuven, Belgium. He is a former post-doctoral researcher of the Declarative Languages and
Artificial Intelligence Research Group at the Department of Computer Science of the K.U. Leuven University in Leuven, Belgium. His research interests include machine
learning, statistical relational data mining, predictive clustering, structured output learning, and inductive databases.
Sašo Džeroski received his Ph.D. degree in computer science from the University of Ljubljana in 1995. He is currently a scientific councilor at the Department of Knowledge
Technologies, Jozef Stefan Institute, and the Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, both in Ljubljana, Slovenia. He is also an
associate professor at the Jozef Stefan International Postgraduate School, also in Ljubljana. His research interests include data mining and machine learning and their
applications in environmental sciences (ecology) and life sciences (biomedicine). He is an ECCAI fellow, member of the executive board of SLAIS, member of ACM SIGKDD
and IEEE.

	Tree ensembles for predicting structured outputs
	Introduction
	Machine learning tasks
	Predicting multiple targets
	Hierarchical classification

	Tree ensembles for predicting structured outputs
	PCTs for structured outputs
	PCTs for predicting multiple target variables
	PCTs for hierarchical multi-label classification

	Ensembles of PCTs for predicting structured outputs
	Constructing ensembles of PCTs
	Bagging
	Random forests
	Combining the predictions of individual PCTs

	Local prediction of structured outputs with PCTs and ensembles
	Computational complexity

	Experimental design
	Experimental questions
	Descriptions of the datasets
	Evaluation measures
	Experimental setup

	Results and discussion
	Multi-target regression
	Multi-target classification
	Hierarchical multi-label classification
	Summary of the results
	Predictive performance
	Convergence
	Efficiency

	Related work
	Methods for multi-target prediction
	Methods for hierarchical multi-label classification

	Conclusions
	Acknowledgment
	Performance measures for classification
	References

