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Trait-based risk assessment for invasive
species: high performance across diverse
taxonomic groups, geographic ranges and
machine learning/statistical tools

Reuben P. Keller1*, Dragi Kocev2 and Sašo Džeroski2

INTRODUCTION

It is widely accepted that the most cost-effective way to reduce

impacts from harmful invasive species is to prevent their

importation (Lodge et al., 2006; Keller et al., 2007a). Prevent-

ing all species imports is not desirable because many more

species are imported than become invasive, and most inten-

tionally imported species are environmentally benign and/or

provide economic and social benefits (e.g. as pets or garden

plants; Reichard & Hamilton, 1997; Smith et al., 1999). This

has spurred ecologists to develop risk assessment tools for

predicting which species pose a high risk of causing harm if

they are imported. Accurate risk assessment tools can support

policy and management efforts to reduce the overall impacts

from harmful invaders while allowing importation of beneficial

species (Keller & Drake, 2009).

Recent efforts at risk assessment have followed a number of

paradigms (Keller & Drake, 2009). Here, we consider the

quantitative approach (sensu Keller & Drake, 2009). This

paradigm holds that there are multiple steps in the invasion
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ABSTRACT

Aim Trait-based risk assessment for invasive species is becoming an important

tool for identifying non-indigenous species that are likely to cause harm. Despite

this, concerns remain that the invasion process is too complex for accurate

predictions to be made. Our goal was to test risk assessment performance across a

range of taxonomic and geographical scales, at different points in the invasion

process, with a range of statistical and machine learning algorithms.

Location Regional to global data sets.

Methods We selected six data sets differing in size, geography and taxonomic

scope. For each data set, we created seven risk assessment tools using a range of

statistical and machine learning algorithms. Performance of tools was compared

to determine the effects of data set size and scale, the algorithm used, and to

determine overall performance of the trait-based risk assessment approach.

Results Risk assessment tools with good performance were generated for all data

sets. Random forests (RF) and logistic regression (LR) consistently produced tools

with high performance. Other algorithms had varied performance. Despite their

greater power and flexibility, machine learning algorithms did not systematically

outperform statistical algorithms. Geographic scope of the data set, and size of the

data set, did not systematically affect risk assessment performance.

Main conclusions Across six representative data sets, we were able to create risk

assessment tools with high performance. Additional data sets could be generated

for other taxonomic groups and regions, and these could support efforts to

prevent the arrival of new invaders. Random forests and LR approaches

performed well for all data sets and could be used as a standard approach to

risk assessment development.
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Artificial intelligence, biological invasions, logistic regression, machine learning,

random forests, receiver-operator curve, traits.

Diversity and Distributions, (Diversity Distrib.) (2011) 1–11

DOI: 10.1111/j.1472-4642.2011.00748.x
ª 2011 Blackwell Publishing Ltd http://wileyonlinelibrary.com/journal/ddi 1

A
 J

ou
rn

al
 o

f 
Co

ns
er

va
ti

on
 B

io
ge

og
ra

ph
y

D
iv

er
si

ty
 a

nd
 D

is
tr

ib
ut

io
ns



process: to become invasive, a species must first survive

transport to be introduced, must then begin reproducing to

become established and must finally spread and cause harm to

be considered invasive (Kolar & Lodge, 2001). A species can

fail or succeed at each step. The quantitative approach

considers that success at any step is a function of species traits

(e.g. biological traits, invasion history, history of domestica-

tion) and that patterns in those traits can be used to explain

success or failure. Patterns are generally searched for with

statistical algorithms, such as logistic regression (LR). If strong

patterns are found, they can be used to assess the risk posed by

species that have not yet been introduced. Other risk

assessment paradigms are generally also based on species traits

and have similar goals to the quantitative approach. These

include the scored questionnaire approach, which is the basis

of the Australian weed risk assessment (Pheloung, 1995), and

individual species literature reviews (e.g. Mandrak & Cudmore,

2004). These latter two approaches are not considered further

in this paper, but see Keller & Drake (2009) for a review.

To create a quantitative risk assessment tool, the assessor

begins by choosing a taxonomic group, geographic range and a

step in the invasion process. Previous risk assessments have

been made for fishes in California passing through the

introduced to established transition (Marchetti et al., 2004)

and for molluscs in the Laurentian Great Lakes passing

through the established to invasive transition (Keller et al.,

2007b; see Kolar & Lodge, 2001; Hayes & Barry, 2008; Keller &

Drake, 2009 for reviews of additional tools). Next, the assessor

chooses species traits that they believe are related to success at

the invasion step and collects data for these traits for all

species. The final step is to use a discrimination algorithm to

search for patterns in traits that are associated with success or

failure at the invasion step. The logic of risk assessment is that

robust patterns in historical data can be applied to future

species introductions to determine the likelihood that they will

pass through the invasion step (Keller & Drake, 2009).

Choice of taxonomic and geographic ranges and invasion

step are generally guided by the ecological or policy question

posed. In contrast, the algorithm used to search for patterns

in data generally depends on the experience and skill of the

assessor and the type and extent of data available. Although

the range of algorithms used to search for patterns in trait

data has recently increased, it remains quite small in

comparison with the large number of methods available.

Risk assessments have generally been created using LR,

discriminant analysis and occasionally classification trees

(Keller & Drake, 2009). Machine learning, a branch of

artificial intelligence (and more broadly computer science),

has developed a wide range of extremely flexible and powerful

methods for finding patterns in data sets. These models are

generally nonparametric, make few assumptions of the data

(e.g. normality) and have been developed to find complex

patterns in large data sets (Witten & Frank, 2005). There is

reason to believe that their increased flexibility and compu-

tational power could find more patterns in trait data and thus

lead to more accurate risk assessments.

Here, we have assembled six risk assessment data sets from

the literature, representing a range of taxonomic groups,

geographic ranges and invasion steps. We have analysed each

with a range of statistical and machine learning algorithms. We

aim to test three hypotheses. First, we hypothesize that

machine learning methods will produce higher performing

risk assessment models than conventional statistical

approaches because they are able to gather more information

from available data sets and because they have proven superior

for ecological applications in the past (e.g. Elith et al., 2006).

Second, we hypothesize that the smaller the recipient geo-

graphic range considered by the risk assessment, the more

likely it is that traits associated with invasiveness will be the

same across species, leading to more accurate risk assessment

models. The logic for this hypothesis is that smaller geographic

ranges will contain less ecological variability, leading to a

narrower set of traits that promote invasion for introduced

species. Third, we hypothesize that the models created using

the risk assessment data sets with relatively more species, and

with relatively more traits for each species, will perform better

because they contain more information. We caveat our tests

for hypotheses two and three by noting that the limited

number of data sets (n = 6) and the heterogeneity in

taxonomic groups, geographic regions and variable selection

mean that our analysis probably has low power.

Additionally, we are interested in the basic question of how

well risk assessment models can predict future invasions. There

remains debate in the literature about whether useful predic-

tions can be made (Smith et al., 1999). We aim to investigate

this by testing performance across a range of data sets and

classification tools. Additionally, we only include species data

that are available before introduction so that the resulting tools

can address the question of how accurately species invasions

can be predicted.

METHODS

Data sets

Six data sets were chosen from the literature based on

completeness of data (i.e. few missing values), our informal

judgment of their quality (based largely on the extent to which

they had been referenced by others) and ease of access (i.e. data

sets had been published in full). The number of data sets was

limited based on these criteria and to remain a tractable

number for our analyses (Table 1; Full data sets used are in

Tables S6–S11 in Supporting Information). The six data sets

span a range of taxonomic and geographic scales, invasion step

transitions and size. The broadest taxonomic group considered

is Phylum Mollusca (MollGL) and the narrowest is the tree

Genus Pinus (PinusG). Other taxonomic groups are at the

Class level of Aves (birds; BirdNZ, BirdAU) or Osteichthyes

(bony fishes; FishCA). The remaining data set (FishGL)

includes 45 species, all but one of which is in Class

Osteichthyes. The final species in this data set is a lamprey,

in Class Petromyzontidae.

R. P. Keller et al.
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Table 1 Details of invasion data sets used.

Data set

name

Taxa/

Geography Transition

Proportion

successful*

# of

species

# of

traits� Traits Source

BirdNZ Birds/

New Zealand

Introduced to

established

0.342 79 5D, 6C 1) Female body length, 2) female

mass, 3) geographical range outside

NZ, 4) migratory, 5) #months insects

part of diet, 6) herbivorous,

omnivorous, carnivorous, 7) clutch

size, 8) broods per season, commonly

found in 9) woodlands, 10) uplands,

11) wetlands

Veltman et al., 1996

BirdAU Birds/Australia Introduced to

established

0.365 52 6D, 5C 1) Female mass, 2) plumage

dichromatism, 3) migratory,

4) flocking, 5) herbivorous,

omnivorous, carnivorous,

6) clutch size, 7) broods per season,

8) days egg incubation, 9) uses

human-dominated habitats,

10) range outside Australia,

11) established non-indigenous

species elsewhere.

Duncan et al., 2001

FishGL Fish/Laurentian

Great Lakes

Introduced to

established

0.533 45 5D, 13C 1) Egg diameter, 2) larval length, 3) adult

length, percent adult length at age

4) 1 year, 5) 2 years, 6) incubation

time, 7) annual fecundity, 8) longevity,

9) age at maturity, 10) max. spawns

during female lifetime, 11) extent of

parental care, 12) native range size,

13) diet breadth, 14) minimum and

15) maximum temp. tolerance,

16) human use of species,

17) established NIS elsewhere.

Kolar & Lodge, 2002

FishCA Fish/California Introduced to

established

0.563 87 3D, 4C 1) Parental care, 2) maximum adult

length, 3) physiological tolerance,

4) minimum distance between CA and

species native range, 5) trophic status,

6) size of native range, 7) number of

countries where species is

non-indigenous established.

Marchetti et al., 2004

MollGL Molluscs/

Laurentian

Great Lakes

Established to

invasive

0.278 18 4D, 4C 1) Mode of reproduction, 2) egg

brooding, 3) maximum adult size,

4) annual fecundity, 5) longevity

6) non-indigenous elsewhere,

7) latitude range, 8) larval stage.

Keller et al., 2007b

PinusG Pinus/Global Introduced to

invasive

0.703 37 5D, 9C 1) Seed mass, 2) mode of seed dispersal,

3) serotiny, 4) generation time,

5) interval between large seed crops,

mean 6) elevation 7) latitude and

8) rainfall in native range, 9) rarity,

10) length of juvenile period,

11) fire tolerance, 12) variation in seed

crop, 13) seed-wing loading index,

14) functional group.

Grotkopp et al., 2004;

Richardson et al., 1990

*Proportion of species in data set that successfully transited invasion transition.

�D, discrete (e.g. is the species herbivorous, carnivorous or omnivorous?); C, continuous (e.g. body length).

Risk assessment methods for invasive species

Diversity and Distributions, 1–11, ª 2011 Blackwell Publishing Ltd 3



Geographic range varies from global (PinusG) to the

Laurentian Great Lakes (MollGL, FishGL). Other data sets

cover the US state of California (FishCA), the continent of

Australia (BirdAU) and the large island system of New Zealand

(BirdNZ).

Each data set includes trait data for the defined group of

species that came to a transition in the invasion process within

the specified geographic area. Four of six data sets cover the

transition from introduced (i.e. present in the region, but not

necessarily found beyond captivity/cultivation) to established

(i.e. wild, self-sustaining population). One data set covers the

transition from established to invasive (i.e. causing negative

impacts) and one from introduced to invasive (Table 1).

The number of species per data set ranges from 18 to 87, and

the number of traits for each data set ranges from 7 to 17, with

most data sets having a roughly equal number of discrete and

continuous trait variables (Table 1). Most species traits are

strictly biological and are specific to the taxonomic group in

question. Four data sets also include an indication of whether

species are established in other areas beyond their native range.

Because we were interested in determining how well trait-based

risk assessment can predict future invasions, we removed all

traits that can only be assessed after a species is introduced (e.g.

area that the species eventually occupies in the recipient

region). This makes our input variables different than for the

original analyses of these data sets and means that our results

are not directly comparable. The dependent variable for each

data set is the binary description of whether the species did or

did not successfully transit the invasion step in question.

Across data sets, the proportion of species that were successful

at the invasion step ranges from 0.278 to 0.702.

Machine learning methods

Seven machine learning and two statistical algorithms were

used to search for patterns in trait data that explain the success

of individual species at the transition step. Each combination

of data set and algorithm created a separate classification

model, referred to as a ‘classifier’. In the following, we briefly

describe the machine learning tools used. The two statistical

methods [LR and linear discriminant analysis (LDA)] are not

described in detail because they are commonly used and

because we used their standard implementations. All algo-

rithms except LDA were implemented using standard proce-

dures (except where noted below) of the software package

Weka (Witten & Frank, 2005). LDA is not available in Weka;

instead, we used its implementation in the mass package of R

(Venables & Ripley, 2002). For LDA, data were transformed

using the internal filters in Weka as for LR and then exported

for analysis in R. Missing data points were replaced with the

average value of the variable for that data set.

Decision trees (DT): DTs (Quinlan, 1993) begin by splitting

the data set at the threshold in one of the predictor variables

that maximizes class homogeneity of the resulting two

subgroups. Each group can be split further and splitting

continues until a user-defined limit (usually the minimum

number of species per subgroup) is reached. Each subgroup is

formed at the ‘node’ of a tree, and the final subgroups exist at

the ‘leaves’. Predictions are made by sorting new species down

the DT until a leaf is reached. The new species is predicted to

succeed at the invasion transition step if greater than half of the

training data set species that reached the same leaf were

successful.

Decision trees have previously been used in ecology (De’ath

& Fabricius, 2000), including for invasive species risk assess-

ment (e.g. Kolar & Lodge, 2002; Keller et al., 2007b). Because

the stopping criterion can affect classifier performance, we

tried minimum leaf sizes of 2, 4, 6,….., 16 species for each data

set and chose the best classifier.

Random forests (RF) and Boosted Decision Trees (BDT) are

ensemble methods that create multiple DT submodels. The

predicted class of a new case is a combination of the

predictions made by each submodel. Ensemble methods have

been shown to produce better results than single models

(Breiman, 1996, 2001; Dietterich, 2000; Caruana & Niculescu-

Mizil, 2006; Kocev et al., 2007).

In the case of RFs (Breiman, 2001), DTs are constructed

from data sets that contain bootstrap replicates of the training

cases. A bootstrap replicate is constructed by applying random

selection with replacement on species in the data set. RFs then

use a randomized decision tree algorithm; instead of consid-

ering all explanatory variables when selecting each split, the

algorithm is constrained to only consider a subset of explan-

atory variables. RF predicts the class membership of a new

example by running it through all DT and predicting that it

belongs to the class most commonly predicted (‘majority

voting scheme’). We followed Breiman’s (2001) recommen-

dations and created RF classifiers with 100 trees and a number

of randomly selected variables for each DT equal to the

logarithm (base 2) of the total number of variables in the

data set.

Boosted decision trees are constructed with a boosting

algorithm (Freund & Schapire, 1996) and begin by creating a

DT. Cases (i.e. species) are weighted by whether the initial

model correctly predicted their class. If the model did not

correctly predict a given case, the weight of that case is

increased. The next submodel is created so that it preferentially

includes splits that lead to correct prediction for cases that

were previously predicted incorrectly. This process continues

until a stopping criterion is reached (e.g. a predefined number

of iterations/trees). The final BDT predicts the class member-

ship of a new example with a weighted voting scheme, whereby

the voting power of each model is proportional to its accuracy.

We created 100 trees for each data set.

Instance-based Learning (IBL) classifiers (Aha et al., 1991)

use a ‘nearest neighbour(s)’ algorithm to estimate class

membership. To classify a new example, the IBL algorithm

finds the training example(s) that are most similar, usually in

Euclidean space. The prediction is the most common class of

the k closest examples (species in our case), where k is a

parameter that can take values from 1 to the number of

training examples. For each data set, we chose the classifier that

R. P. Keller et al.

4 Diversity and Distributions, 1–11, ª 2011 Blackwell Publishing Ltd



performed best from classifiers created with k values of 1, 3,

5,…., 17.

Naı̈ve Bayes Classifier (NB) is a probabilistic algorithm that

uses Bayes’ theorem with a naı̈ve independence assumption;

the influence of the value of an explanatory variable on a given

class is independent of the values of the other variables. NB

uses the training examples to learn probabilistic relationships

between the predictor and response variables. The prior and

conditional probabilities are combined to give the posterior

class probability, which is the predicted class membership of a

new example.

Support Vector Machines (SVM) treat the training examples

as two sets of vectors (i.e. species successfully passed invasion

step, species failed) in n-dimensional space. In the simplest

case of two explanatory variables, the classes are plotted in two-

dimensional space and the SVM algorithm finds the line

(‘hyper-plane’) that maximizes the margin between the two

classes. SVMs are generalized linear classifiers; by using

appropriate nonlinear kernels, they can be applied to nonlinear

classification tasks (Boser et al., 1992). This is carried out by

nonlinear mapping of the examples to a higher dimensional

space where a linear classifier can be applied.

Many algorithms are available for constructing the hyper-

plane. We used the Sequential Minimal Optimization (SMO)

algorithm (Platt, 1999). We tuned the algorithm by testing

different kernel types and parameters for each data set –

polynomial kernel with exponents 1, 2 and 3; normalized

polynomial kernel with exponents 1, 2 and 3; and radial

basis function with gamma values 0.01, 0.02, 0.03, 0.1,

0.5, 1.0.

Classification Rule (CR) algorithms use the training examples

to create a set of if/then statements (rules). The rules have the

form ‘IF conditions THEN prediction’. The rules can be

constructed directly from the training examples or from other

classifiers (e.g. a decision tree can be transformed into a set of

rules). Each rule within a CR can apply to fewer cases than are

in the full data set. We used the RIPPER (Cohen, 1995) CR

learner that allowed us to set the minimum number of cases

covered by a rule. We tested across minima of 2, 4, 6,….., 16

cases and chose the best classifier.

Analysis

Each algorithm produced a classifier for each data set. We used

leave-one-out cross-validation to estimate classifier perfor-

mance on unseen cases. This removes one species (‘hold-out’)

from the data set, calculates the best classifier from the

remaining data and tests it on the hold-out species. This is

repeated for every species in the data set.

Our principal performance metric for each classifier was the

area under the receiver-operator characteristic curve (AUROC;

Fawcett, 2006; Flach, 2003). AUROC values higher than 0.7

indicate a good fit of model to data; values higher than 0.9

indicate extremely good fit (Pearce & Ferrier, 2000). We chose

AUROC because it gives an estimate of classifier performance

with respect to both outcomes (i.e. species does or does not

transit invasion step) and is not sensitive to the prior

distribution of outcomes. Additionally, we calculated classifier

accuracy as the proportion of times that the category of the

hold-out species was correctly predicted. For algorithms that

give categorical predictions (DT, RF, BDT, IBL, SVM, CR), it is

straightforward to determine whether the predicted class of the

hold-out species was correct. For algorithms that give prob-

abilistic predictions (LR, LDA, NB), we used a threshold of 0.5

to discriminate between predictions of success (> 0.5) and

failure (< 0.5).

Three algorithms (DT, CR, SVM) have parameters that can

be tuned to optimize performance. We performed parameter

tuning with the MultiScheme package in Weka. MultiScheme

creates classifiers over the range of possible parameter values,

tests each for performance and chooses the best (according to

AUROC) as the final classifier (see Appendix S1 in Supporting

Information for full details, and Table S1 in Supporting

Information for the parameter values used in the final

classifiers).

We followed Demšar (2006) and used Friedman tests

(Friedman, 1940; Iman & Davenport, 1980) to search for

significant differences in performance among algorithms. This

ranks algorithms according to performance on each data set

and then compares average ranks. When significant differ-

ences were found, we used Nemenyi post hoc tests (Demšar,

2006) to locate the differences. This test finds a critical

distance that must exist between the average ranks of two

algorithms for them to be significantly different. We used a

significance level of P = 0.05 for Nemenyi tests. The same

procedures (i.e. Friedman and Nemenyi tests) were followed

to search for significant differences in performance among

the six data sets.

As described earlier, different algorithms used have very

different ways of selecting and utilizing variables to produce

classifiers. This makes a comparison across all algorithms of

the number of variables chosen, and the actual variables

chosen, impractical. DT and CR are the only algorithms that

use variables in a comparable way. We compared the classifiers

created by these algorithms to determine the extent to which

they use different variables and different numbers of variables.

RESULTS

Area under the receiver-operator characteristic curve values for

combinations of statistical/machine learning algorithms and

data sets ranged from 0.436 to 0.941 (Table 2). The best

performing algorithms were RFs and LR, each of which

achieved a good fit (i.e. AUROC > 0.7) for all data sets. BDTs

also had a high average AUROC but were less consistent.

CRs and SVMs were the worst performing classification

methods. There was not a significant difference in performance

among the algorithms according to the AUROC results

(Friedman test P = 0.104; Fig. 1a; ranks in Table S2 in

Supporting Information).

Accuracy results are presented in Table 3 and generally

follow the pattern of AUROC results. Again, no significant

Risk assessment methods for invasive species
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Table 2 Classifier performance presented as area under the ROC (AUROC) for each combination of algorithm and data set (see Methods

for algorithm, and Table 1 for data set, acronyms).

Data set LR LDA DT RF BDT IBL NB SVM CR Average

BirdNZ 0.726 0.635 0.691 0.731 0.682 0.680 0.594 0.523 0.436 0.633

BirdAU 0.724 0.845 0.583 0.745 0.681 0.785 0.864 0.808 0.581 0.735

FishCA 0.728 0.737 0.691 0.709 0.670 0.648 0.724 0.587 0.616 0.679

FishGL 0.806 0.673 0.662 0.782 0.871 0.468 0.804 0.667 0.699 0.715

MollGL 0.846 0.769 0.846 0.877 0.815 0.900 0.692 0.800 0.831 0.820

PinusG 0.808 0.781 0.741 0.941 0.930 0.811 0.895 0.696 0.825 0.825

Average 0.773 0.740 0.702 0.798 0.775 0.715 0.762 0.680 0.665 0.734

AUROC, area under the receiver-operator characteristic curve; BDT, boosted decision trees; CR, classification rule; IBL, instance-based learning; LDA,

linear discriminant analysis; LR, logistic regression; NB, Naı̈ve Bayes Classifier; RF, random forests; SVM, support vector machines.

9 8 7 6 5 4 3 2 1

Random forest: 2.83

Logistic regression: 3.58

Boosted decision trees: 4.33

Naive Bayes: 4.33Linear discriminant analysis: 5.00

Instance based learning: 5.17

Decision tree: 5.92

Classification rule: 6.67

Suport vector mach.: 7.17

Critical distance = 4.90

9 8 7 6 5 4 3 2 1

Logistic regression: 3.92

Boosted decision trees: 4.17

Random forest: 4.17

Naive Bayes: 4.42

Instance based learning: 5.17

Linear discriminant analysis: 5.50

Classification rule: 5.58

Suport vector machines: 5.83

Decision tree: 6.25

Critical distance = 4.90

(a)

(b)

Figure 1 Average ranks diagram for the

nine classification algorithms compared by

(a) area under the receiver-operator

characteristic curve and (b) accuracy.

Algorithms that did not perform

significantly differently [i.e. difference in

average ranks is less than critical distance

(P-value = 0.05)] are connected by a line.

Numbers next to algorithm names are

average ranks.

Table 3 Classifier performance presented as accuracy for each combination of algorithm and data set (see Methods for algorithm, and

Table 1 for data set, acronyms).

Data set LR LDA DT RF BDT IBL NB SVM CR Average

BirdNZ 64.6 62.0 75.9 68.4 70.9 63.3 64.6 59.5 60.8 65.6

BirdAU 75.0 78.8 50.0 76.9 69.2 76.9 76.9 82.7 67.3 72.6

FishCA 70.1 70.1 54.0 66.7 59.8 59.8 71.3 59.8 63.2 63.9

FishGL 77.8 64.4 77.8 71.1 75.6 48.9 68.9 66.7 71.1 69.1

MollGL 88.9 83.3 88.9 83.3 88.9 94.4 77.8 88.9 88.9 87.0

PinusG 70.3 67.6 78.4 81.1 89.2 81.1 86.5 75.7 73.0 78.1

Average 74.5 71.0 70.8 74.6 75.6 70.7 74.3 72.2 70.7 72.7

BDT, boosted decision trees; CR, classification rule; IBL, instance-based learning; LDA, linear discriminant analysis; LR, logistic regression; NB, Naı̈ve

Bayes Classifier; RF, random forests; SVM, support vector machines.

R. P. Keller et al.
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difference was found in performance among algorithms

(Friedman P = 0.902; Fig. 1b; ranks in Table S3 in Supporting

Information), and the best performers were BDTs, RFs and LR,

with CRs and SVMs performing worst.

Hypothesis 1 – performance of classification methods

We reject our first hypothesis that statistical algorithms (LR,

DA) would be consistently outperformed by machine learning

algorithms. Despite rejecting this hypothesis, we note that the

P-value for the Friedman test of AUROC values is almost

significant (P = 0.104) and that three methods (RFs, BDTs and

LR) clearly stand out.

Hypothesis 2 – geographic range of data sets

Our second hypothesis was that data sets based on smaller

recipient geographic ranges would contain organisms more

likely to share traits associated with invasion and thus produce

better classifiers. There were significant differences among data

sets for both AUROC (Table 2; Friedman test P < 0.0001,

ranks in Table S4 in Supporting Information) and accuracy

results (Table 3; Friedman test P < 0.0001, ranks in Table S5

in Supporting Information). Figure 2 shows the average ranks

diagram for comparison of data sets (critical distance from

Nemenyi post hoc tests). MollGL and FishGL have the smallest

geographic range and PinusG the largest. Our hypothesis

predicts that the former two data sets would perform better

than PinusG because they are based on a smaller area where the

factors associated with invasion are more likely to be consis-

tent. This trend did not occur. PinusG, with the largest

geographic range, was the best performing data set according

to AUROC. The hypothesized pattern was not evident across

results for the other data sets.

Hypothesis 3 – number of species and traits

We found no positive relationship between classifier perfor-

mances based on the number of species in the training data set.

Data sets with highest performance (PinusG and MollGL) were

the smallest (Tables 1 and 2), and data sets with the worst

performance were some of the largest. Likewise, we saw no

relationship between the number of traits in a data set and

performance (Tables 1 and 2).

Comparison of classifiers produced by DT and CR algo-

rithms shows large differences between the number of

variables, and the actual variables, selected for classifiers. For

example, the DT classifier for PinusG is based on one variable,

while the CR is based on two separate variables. Also of interest

is that the DT for BirdsNZ is based on four variables, while the

CR includes no variable and simply predicts that all species will

fail to establish. This corresponds with the low proportion of

6 5 4 3 2 1

PinusG: 1.78

MollGL: 2.11

BirdAU: 3.67

FishGL: 3.78

FishCA: 4.61

BirdNZ: 5.06

Critical distance = 2.51

6 5 4 3 2 1

MollGL: 1.22

PinusG: 2.33

BirdAU: 3.44

FishGL: 3.89

FishCA: 4.89

BirdNZ: 5.22

Critical distance = 2.51

(a)

(b)

Figure 2 Average ranks diagram for the

six data sets compared by (a) area under

the receiver-operator characteristic curve

and (b) accuracy. Data sets that did not

produce classifiers with significant differ-

ences in average rank [i.e. difference in

average ranks is less than critical distance

(P-value = 0.05)] are connected by a line.

Numbers next to algorithm names are

average ranks.
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successful establishers in that data set (Table 1; see Appen-

dix S2 in Supporting Information for full analysis of CR and

DT classifiers).

DISCUSSION

Across all data sets, there was good discrimination between

successful and unsuccessful species (i.e. AUROC > 0.7)

whenever LR or RF algorithms were used. The average

AUROC value from all analyses (0.734, Table 2) further

indicates strong relationships between species traits and

success at passing through steps in the invasion sequence.

In six cases, AUROC showed very strong concordance

between model and data (AUROC > 0.85). This suggests

that risk assessment tools based only on information that is

available prior to species introduction can produce good

models for determining whether a species will become

invasive in the future.

Elith et al. (2006) performed a similar test to ours, assessing

the performance of several machine learning and statistical

tools for predicting the total geographic range of a species

based on a subset of observed records. They found that

machine learning tools, many similar to the tools used here,

performed better than more traditional methods. In contrast,

we found no significant differences in performance among the

algorithms used. The most likely explanation for this comes

from the size of the data sets used here, which are all much

smaller than those used by Elith et al. (2006). Machine learning

algorithms are generally developed and refined using data sets

that have more than 1000, and often hundreds of thousands, of

cases. Our largest data set contained 87 species. It is likely that

in many instances the machine learning algorithms were over-

fitting the data. That is, the classifiers created may have relied

on patterns expressed by only a small number of species, and

those patterns did not hold when the classifiers were applied to

hold-out species.

Recent theory for invasive species risk assessment has

emphasized that data sets assembled for smaller geographic

regions should result in better performing models (Kolar &

Lodge, 2001; Keller & Drake, 2009). The best performing data

set in our analysis had the largest geographic range (PinusG),

and there was no clear relationship between geographic range

and performance for the remaining data sets. Recent theory has

also suggested that smaller taxonomic groups should perform

better. The smallest taxonomic group assessed here was also

the best performing (PinusG). It is interesting to note that the

largest taxonomic group (MollGL) performed extremely well

and that it was also the most geographically restricted. These

results hint that either small geographic range or small

taxonomic group lead to high performance, but further

analyses on other data sets would be required to explore this

further.

Data set size, and the number of variables in each data

set, had no apparent relationship to classifier performance.

All else being equal, it is reasonable to expect that data sets

with more species and/or variables will perform better

because they contain more information and offer better

insurance against over-fitting. Our results suggest that any

effect of this is swamped by other factors. We emphasize

here that our study is likely limited by the number of data

sets (n = 6) and thus probably has low power to reject

hypotheses two and three. Additionally, the data sets used

are heterogeneous in size, taxonomic and geographic cover-

age and perhaps also in the quality of data. These could

each confound any comparison across data sets. With regard

to hypotheses two and three, we conclude that further

research is needed to conclusively determine whether they

are true and that they should not be rejected based solely on

results presented here.

Comparison of DT and CR results shows that these

algorithms produced classifiers based on different actual traits,

and on different numbers of traits, for five of six data sets

(Appendix S2 in Supporting Information). This demonstrates

that interactions between species biology (i.e. traits) and

algorithm can lead to very different classifiers, often with very

different performances (Tables 1 and 2). The exception is the

Great Lakes mollusk data set, for which both DT and CR

classifiers perform very well (AUROC = 0.846 and 0.831,

respectively) and are based on the single trait of annual

fecundity per female. This is the same single trait that was

chosen by LR and DT algorithms in the original analysis of this

data set (Keller et al., 2007b). This consistency suggests that,

at least in some cases, the basic biology of the taxonomic

group in question can override the large differences in how

different algorithms search for patterns in the data. In turn,

this means that some combinations of taxonomic group and

geographic range may be more tractable for risk assessment.

Further research in this area using additional data sets may

discover patterns that could guide future risk assessment

development.

A major goal of invasive species risk assessment is to support

policies that identify and exclude species posing a high risk of

becoming invasive. For the present study, we removed all

variables that required data that could not be gathered prior to

species introduction. This makes our assessed performances

and accuracies relevant to the problem of the decision-maker

working to design import policy based on ecological predic-

tions. Keller et al. (2007a) constructed an economic model for

determining when it is financially beneficial to apply a risk

assessment as policy and applied the model to the Australian

trade in ornamental plants. They found that applying risk

assessment tools with accuracy > 70% creates net financial

benefits over reasonable assumptions of discount rate and time

horizon. Assessed by accuracy, the Californian fish data set was

the worst performing, with a maximum accuracy of 71.3%.

Accuracies for other data sets and algorithms were as high as

94.4%. Although these results suggest that all six data sets

could provide financial benefits if incorporated into policy, we

outline three reasons in the following to be cautious in this

interpretation.

First, the data sets analysed here contain high proportions of

species that successfully transited the invasion step in question

R. P. Keller et al.
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(0.278–0.703). These proportions are referred to as base-rates,

and depending on taxonomic group and geographic region, true

base-rates are generally < 10% for plants and < 50% for animals

(Keller & Drake, 2009). This means that the risk assessment

tools developed here will have a bias towards correctly

identifying successful species. If applied by policy makers to a

group of species proposed for introduction, this would result in

high rates of false positives, which would reduce the financial

benefits of using the risk assessment tool by preventing benign

species from entering trade (see Smith et al. (1999) for a detailed

discussion of base-rates and risk assessments).

Second, we used internal leave-one-out cross-validation to

assess the performance of risk assessment tools. This method is

appropriate here because the data sets are small. A more robust

test, available when data sets are larger, is to reserve a subset of

the data for testing (e.g. use 75% of species to generate risk

assessment, test performance on remaining 25% of species).

Such a test may show poorer performance of the classifiers

produced. A third limitation of our data compounds this issue.

All species in each data set were introduced in the past, while

patterns of future species introductions may be quite different.

For example, it is reasonable to expect that new suites of

species will be transported around the globe as trading patterns

change and especially as new regions enter the global economy.

These new species may have different traits than the species

analysed here, reducing the performance of the classifiers

generated in this paper. In total, these three points indicate that

the risk assessment performances reported here may be higher

than the performance that would result from applying these

tools in policy.

Predicting the impacts of introduced species is notoriously

difficult, and it has been argued that the complexity of the

ecological processes involved makes it essentially impossible. In

this study, we took six data sets from the literature, trimmed

them to only include data that are available prior to species

introduction and analysed them with a range of algorithms.

Our results include high performing models for each of the

data sets and suggest that a reasonable fallback is to either use

LR or ensemble (e.g. RF) algorithms. If only one algorithm is

to be used on a particular data set, then LR is probably the best

of those considered here because it has consistently high

performance, is widely taught, and the results are relatively

easy to interpret. Ideally, however, multiple algorithms should

be used because our results show that LR is not always the

highest performing.
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Appendix S1 Parameter setting methods for machine learning

tools.

Appendix S2 Comparison of DT and CR classifiers.

Table S1 Tuning parameters selected for machine learning

algorithms.

Table S2 Ranks of algorithm performance by AUROC.

Table S3 Ranks of algorithm performance by accuracy.

Table S4 Ranks of data set performance by AUROC.

Table S5 Ranks of data set performance by accuracy.

Tables S6–S11 Full data sets used (see Table 1).
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