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Abstract. Hierarchical multi-label classification (HMLC) is a variant of classifi-
cation where instances may belong to multiple classes that are organized in a hier-
archy. The approach we used is based on decision trees and is set in the predictive
clustering trees framework (PCTs), which is implemented in the CLUS system.
In this work, we are investigating how different distance measures for hierarchies
influence the predictive performance of the PCTs. The distance measures that we
consider include weghted Euclidean distance, Jaccard, SimGIC and ImageCLEF
distance. We use datasets from the area of functional genomics to evaluate the
performance of the PCTs with different distances. The datasets describe different
functions of the genes in the genomes of two well-studied organisms: S. Cere-
visiae and A. Thaliana. We use precision-recall curves as an evaluation metric
for the predictive performance. The results from the Friedman test for statistical
significance suggest that there is no statistical significance in the performance.

1 Introduction

Hierarchical multi-label classification (HMLC) is an extension of binary classification
where an instance can be labeled with multiple classes that are organized in a hierarchy.
Additionally, when an instance is assigned to some class it should also be assigned to
all its superclasses. The main applications of HMLC are in the areas of gene function
prediction [1, 2], text classification [3] and image classification [4].

There are two general approaches for solving the HMLC task: decomposing this
task to simpler single-target tasks and solving them with basic classification approaches
or using the hierarchical structure and trying to make predictions for the whole hierar-
chy. An example for the first approach is learning a binary classifier for each class and
an example for the second approach is to learn a single model which predicts all the
classes simultaneously. The second group of algorithms has some advantages over the
first group [5–7]. First, they exploit the dependencies between the components and as a
result have better predictive performance. Second, they are more efficient: it can easily
happen that the number of components in the output is very large (e.g., hierarchies in
functional genomics) in which case running a learning algorithm for each component
is not feasible. Third, they produce a single model valid for the structure as a whole,
as compared to the many models, each valid just for one given component: the single
model is usually much more concise.
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In this study, we focus on the latter approach: we learn a single Predictive Clustering
Tree [6] to make a prediction for the complete hierarchy. The PCTs were extended
to the HMLC task by Vens at al. [2], and they use weighted Euclidean distance as a
distance measure between two hierarchies. Here, we consider three additional distance
measures (Jaccard distance [13], SimGIC [8] and ImageCLEF [9]). We implemented
the distance measures in the CLUS system and we evaluated them on several datasets
from functional genomics.

The remainder of this paper is organized as follows: Section 2 describes the PCTs al-
gorithm and the proposed distance measures and Section 3 presents the datasets that we
used for evaluation. Section 4 gives the experimental design, while Section 5 presents
the obtained results. Finally, conclusions and points for further work are presented in
Section 6.

2 Methodology

2.1 Predictive Clustering Trees

The approach we use is based on decision trees and is set in the predictive cluster-
ing trees (PCTs) framework. This framework views a decision tree as a hierarchy of
clusters, where the top node correspond to a cluster containing all data, which are
recursively partitioned into smaller clusters while building the tree from top to bot-
tom. The PCT framework is implemented in the CLUS system (available at http:
//www.cs.kuleuven.be/˜dtai/clus).

PCTs can be constructed with a standard ”top-down induction of decision trees”
(TDIDT) algorithm. The heuristic that is used for selecting the tests is the reduction
in variance caused by partitioning the instances. Maximizing the variance reduction
maximizes cluster homogeneity and improves predictive performance. With appropriate
instantiation of the variance and prototype function the PCTs can handle different types
of data, e.g., multiple targets [11] or time series [12]. A detailed description of the PCT
framework can be found in [6].

In the remainder of this sub-section, we explain how PCTs were instantiated for the
HMLC task, namely we present the internal representation of the hierarchy, annotation
of the examples, making a prediction and we give an example of PCT for HMLC.
The hierarchy is represented as a 0/1 vector: if a given example is labeled with some
label, then for that label the value in the vector is set to 1, otherwise it is set to 0. The
annotation scheme is presented in Figure 1. The example is annotated with the following
labels: B, B.1, C, D, D.2 and D.3. If an example belongs to a node, then it belongs also
to all the node’s parents.

The reduction of variance is calculated using the following equation:

V ar(S) =
∑
i d(vi, v̄)2

|S|
(1)

where S denotes the set of examples over which the variance is calculated, v̄ is the
mean label, and vi is a label of the example. The sum goes over all possible labels. The
mean label is calculated as the mean of the vectors of the examples from S, in that node.
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Fig. 1. A hierarchy (left) with an example annotated to it (subset of the hierarchy shown bold);
the example’s vector representation (right).

Different distance measures can be used in equation 1. In the original implementa-
tion from [2], the Euclidean distance is used for PCT induction. In this work, we use
three other distances that can be used in the context of HMLC. We present and explain
the distances in the next sub-sections.

The PCTs at every leaf of the tree contain probabilities (a probability vector) of an
instance belonging to each class in the hierarchy. To obtain a prediction, a threshold
is applied to the probability vector. If a given label has a bigger probability than the
threshold, the example is annotated with that label and its parents. An example of a
PCT for HMLC is presented in Figure 2. It looks like an ordinary decision tree, but in
the leaves, instead of the majority class, it contains as prediction the annotation for the
examples from that node. Note that for some of the leaves have prediction: ”none”. This
is because no annotations could be assigned for the used threshold value (i.e., the prob-
abilities for example belonging to the classes are lower than the specified threshold).

Fig. 2. An example PCT for HMLC, obtained with a given threshold, for the ’church’ dataset with
FunCat annotation.
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2.2 Weighted Euclidean distance

The Euclidean distance is a well known distance measure. In order to include knowl-
edge about the hierarchy, Vens et al. [2] have introduced a weighting scheme that de-
pends on the depth of the node in the hierarchy. The weighted Euclidean distance can
be calculated using the following equation:

d(v1, v2) =
√∑

i

w(ci)(v1,i − v2,i)2 (2)

where vk,i is the i’th component of the class vector vk of an instance xk. The function
w(c) is denoted as the weighting scheme and the default instantiation here is to apply
a weight to each class label c according to the depth of this class in the hierarchy (e.g.,
w(c) = w

depth(c)
0 with 0 < w0 < 1). With this parameter, the user can control the

influence of the top classes on the distance.
Let us consider two examples: (x1, S1) and (x2, S2), which are annotated with the

hierarchy from Figure 1: S1 = {B, B.1, C, D, D.2, D.3} and S2 = {D, D.2, D.3}. Using
the vector representation presented above, the weighted Euclidean distance is:

d(S1, S2) =
√
w0 + w2

0 + w0 (3)

The weighting function described here is only one of the possible weighting schemes
that can be used. Others weighting schemes are described in [2] and it is recommended
to use weighting.

2.3 Jaccard distance

The Jaccard distance [13] (which can also be found in the literature as Union-intersection
distance/score) can be calculated using the following equation:

dJaccard(v1, v2) = 1−
∑
c∈labels(v1)∩labels(v2) w(c)∑
c∈labels(v1)∪labels(v2) w(c)

(4)

where v1 and v2 are class vectors, labels(v) presents the elements from v, c is a class
node from vk. This distance actually is taking into account the ratio between the sum of
the weights of the joint annotations and the sum of the weights of the annotations of both
examples. As in the case of weighted Euclidean distance, we use the same exponential
weighting scheme.

Let us consider the same example as for the weighted Euclidean distance. The Jac-
card distance for the two examples (x1, S1) and (x2, S2) will be:

d(S1, S2) = 1− w0
0 + w0 + w2

0 + w2
0

w0
0 + w0 + w2

0 + w0 + w0 + w2
0 + w2

0

= 1− 1 + w0 + 2w2
0

1 + w30 + 3w2
0

(5)
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2.4 SimGIC distance

The Similarity for Graph Information Content (SimGIC) distance [8] is similar to the
Jaccard distance, but instead of summing the weights of the labels, it sums up their
information content [2].

dSimGIC(v1, v2) = 1−
∑
c∈labels(v1)∩labels(v2) IC(c)∑
c∈labels(v1)∪labels(v2) IC(c)

(6)

The variables here are the same as for the Jaccard distance, and IC(c) is the Infor-
mation Content for a class node c, which is calculated as:

IC(c) = −logp(c) (7)

Here p(c) is the probability of usage of the label in the dataset, which is calcu-
lated as the frequency of the label in the dataset. Let us consider the example from the
weighted Euclidean and Jaccard distance sub-sections. The SimGIC distance for the
two examples (x1, S1) and (x2, S2) will be:

d(S1, S2) = 1− −log(P (all)P (D)P (D.2)P (D.3))
−log(P (all)P (B)P (B.1)P (C)P (D)P (D.2)P (D.3))

(8)

The ImageCLEF distance is derived from the evaluation score of the ImageCLEF
annotation task [9]. This distance can be calculated using the following formula:

dImageCLEF (v1, v2) = 1−
∑
c∈labels(v1)∩labels(v2)

1
siblings(c)+1

1
depth(c)∑

c∈labels(v1)∪labels(v2)
1

siblings(c)+1
1

depth(c)

(9)

where siblings(c) denotes the number of siblings of the class node c in the hierarchy
and depth(c) is the depth of the class node c (the root node is omitted in the calcula-
tions).

Let us consider the same example as for the weighted Euclidean distance. The Im-
ageCLEF distance for the two examples (x1, S1) and (x2, S2) will be:

d(S1, S2) = 1−
1
4

1
1 + 1

3
1
2 + 1

3
1
2

1
4

1
1 + 1

1
1
2 + 1

4
1
1 + 1

4
1
1 + 1

3
1
2 + 1

3
1
2

=
12
19

(10)

2.5 Adaptations of the distance measures for DAGs

The variance (equation 1) is computed using the distance between the class vectors,
where a class c’s weight w(c) depends on its depth in the class hierarchy (e.g., w(c) =
w
depth(c)
0 with 0 < w0 < 1). When the hierarchy structures the classes in the form

of a directed acyclic graph (DAG), the depth of a class is not unique since it can have
more than one path to a top-level class. An approach was chosen with rewriting the
equation w(c) = w

depth(c)
0 to its recurrent form w(c) = w0w(par(c)), where par(c) is
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the parent class of c. Using the equation in this form along with an aggregation function
(like sum, min, max, average) several alternatives are possible. In this work we chose
to use the average as aggregation function, as recommended in [2]. So, the weighting
scheme for DAGs can be defined as follows:

w(c) = w0avgjw(parj(c)) (11)

3 Data Description

In this section, we describe the datasets that we used to evaluate the distance measures.
We used sixteen datasets from the domain of functional genomics. The datasets repre-
sent different aspects of the genes in the genome of Saccharomyces Cerevisiae (12 of
the datasets) and Arabidopsis Thaliana (4 of the datasets).

We consider two annotation schemes: FunCat [14] which is a tree-structured class
hierarchy and the Gene Ontology (GO) [15], which forms a hierarchy using a directed
acyclic graph: each term can have multiple parents (to be more precise, GO’s ”is-a”
relationship between terms is used here).

The basic properties of the datasets are presented in Table 1. The number of exam-
ples in each dataset ranges from 1592 to 11763, the number of attributes from 27 to
19628, and the number of nodes in the hierarchy from 250 to 4125.

The datasets include different types of bioinformatic data. The ’pheno’ dataset con-
tains information about the phenotype; ’church’ and ’eisen’ contain data about the
expression levels as measured with microarray chips. The ’scop’ dataset contains the
predicted SCOP class, while ’struc’ has the predicted secondary structure. The protein
pattern annotations are available in the ’interpro’ datasets. Datasets ’spo’, ’cellcycle’,
’derisi’, ’gasch1’, ’gasch2’ contain microarray data - expression levels of genes of the
yeast genome. A more detailed description of the datasets can be found in [10, 2].

4 Experimental design

4.1 Evaluation measures

To measure the predictive performance of the algorithm with the different distance mea-
sures we will use Precision-Recall (PR) curves. These curves are obtained by plotting
the precision and recall using different thresholds for the obtained probability vectors
from the PCTs. Precision is the proportion of positive predictions that are correct, and
recall is the proportion of positive examples that are correctly predicted positive. That
is,

Prec =
TP

TP + FP
Prec =

TP

TP + FN
(12)

with TP the number of true positives (correctly predicted positive examples), FP the
number of false positives (positive predictions that are incorrect), and FN the number
of false negatives (positive examples that are incorrectly predicted negative). Note that
these measures ignore the number of correctly predicted negative examples.
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Table 1. Basic properties of the used datasets.

The reason why Precision-Recall based evaluation is chosen in this context instead
of the ROC analysis, which is more popular, was the following. In functional genomics
datasets similar to the ones described and used here, typically only a few genes have
been annotated to have a particular function (a particular class in the class hierarchy).
This implies that one has to deal with a strongly skewed class distribution were the
number of negative instances by far exceeds the number of positive ones [2]. There is
a strong interest for correctly predicting the positive instances (that an instance has a
given label), rather than the negative ones. ROC curves can present an overly optimistic
view of the algorithm’s performance (giving rise to a low false positive rate).

We use two approaches to calculate the AUPRC: area under the average PR curve
and average area under the PR curve. The first approach uses averages of the precision
and recall over all classes, thus obtaining a single curve (AU( ¯PRC)). The second ap-
proach constructs PR curve for each class, and returns the average area under the PR
curves for all classes ( ¯AUPRC). The two curves are able to catch different aspects of
the performance of the distance measures. The first curve measure uses the information
about the frequencies of the classes and the more frequent classes have bigger influence
to the final score. On the other hand, the second measure is averaging the performance
of each of the classes, i.e. each class has equal contribution to the final score.

4.2 Experimental methodology

The evaluation of the predictive performance was done using separate testing sets. The
threshold value ranged from 0.0 to 1.0 step 0.05. The weight of the depth (w0) was set
to 0.75, same as in [2]. Vens et al. in [2] conclude that the weighting parameter has no
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strong effect on the performance (as compared to non-weighted it gives slightly better
results when using Euclidean distance).

To prevent over-fitting, we used two pre-pruning methods: minimal number of ex-
amples in a leaf and F-test pruning.The minimal number of examples in a leaf is used
as a stopping criterion in the PCT induction algorithm. In our experiments we set this
value to 5 examples. The F-test pruning uses the F-test for statistical significance. The
F-test is used by the algorithm to check whether the variance reduction is statistically
significant at a given significance level. The algorithm takes as input a vector of signifi-
cance levels and, by internal 10-fold cross-validation it selects one. In our experiments
the used vector of significance levels was [0.001, 0.005, 0.01, 0.05, 0.1, 0.125].

5 Results

The performance results of the four different distance measures on the sixteen datasets
are summarized in Table 2 and Table 3. As stated in the experimental design section,
to evaluate the predictive performance we use the following two measures: the area
under the average precision-recall curve and the average area under the PR curves. To
check whether the difference in the performance using each of the four distances is
statistically significant we used the corrected Friedman test (as recommended in [16]).
The corrected Friedman test didn’t detect any statistically significant differences in the
performance in both cases (p ¡ 0.073 for the are under the average PR curve, and p ¡
0.176 for the average area under the PR curves).

Table 2. Predictive performance of the algorithms estimated by the area under the average PR
curve.
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The ranking of the distances by the area under the average PR curve is as follows:
the SimGIC distance has the best average rank, followed by the weighted Euclidean dis-
tance and the ImageCLEF distance. The Jaccard distance has the worst average rank.
The situation is a bit different when average area under the PR curves is used for com-
parison: the weighted Euclidean distance has the best rank, followed by the SimGIC
distance. Next are the ImageCLEF and Jaccard distance with equal rank.

Table 3. Predictive performance of the algorithms estimated by the average area under the PR
curves.

In Figure 3, we present the average PR curves obtained using the four distances and
the ’pheno’ dataset with FunCat annotation (Saccharomyces Cerevisiae). We can see
that the PR curve for SimGIC is always above the PR-curves for the other distances. It
thus clearly performs better than the other distances on this dataset.

6 Conclusions

In this work, we have reviewed and evaluated several distance measures that can be
applied in the hierarchical multi-label classification task. In particular, we compared
the weighted Euclidean distance, Jaccard distance, SimGIC distance and ImageCLEF
distance. The distances were appropriate for hierarchies in the form of a tree, as well as
hierarchies in the form of a directed acyclic graph.

We used separate testing sets to evaluate the influence of each distance measure on
the learning process. The predictive performance was estimated with the area under the
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Fig. 3. An example PCT for HMLC, obtained with a given threshold, for the ’church’ dataset with
FunCat annotation.

average PR curve and the average area under the PR curves. The corrected Friedman test
for statistical significance testing didn’t detect difference in the performance. However,
the SimGIC distance has the best average rank for the area under the average PR curve,
while weighted Euclidean distance for the average area under the PR curves.

For future work, we plan to investigate the different weighting schemes. A dis-
tance can achieve better predictive performance if used with an appropriate weighting
scheme. Also, we will conduct series of experiments on additional datasets from func-
tional genomics and other domains, such as image annotation, text categorization etc.

Another line of further work is the use of ensembles form PCTs [17] to check
whether the ensembles can increase the predictive performance and which distance is
most suitable for ensemble learning.

Also we plan to investigate other evaluation measures of predictive performance
adapted for HMLC [18], such as the hierarchical F-measure, hierarchical Precision,
hierarchical Recall, average category similarity and other.
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