
Beam Search Induction and Similarity
Constraints for Predictive Clustering Trees

Dragi Kocev1, Jan Struyf2, and Sašo Džeroski1

1 Dept. of Knowledge Technologies, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Dragi.Kocev@ijs.si, Saso.Dzeroski@ijs.si
2 Dept. of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium
Jan.Struyf@cs.kuleuven.be

Abstract. Much research on inductive databases (IDBs) focuses on lo-
cal models, such as item sets and association rules. In this work, we
investigate how IDBs can support global models, such as decision trees.
Our focus is on predictive clustering trees (PCTs). PCTs generalize deci-
sion trees and can be used for prediction and clustering, two of the most
common data mining tasks. Regular PCT induction builds PCTs top-
down, using a greedy algorithm, similar to that of C4.5. We propose a
new induction algorithm for PCTs based on beam search. This has three
advantages over the regular method: (a) it returns a set of PCTs satis-
fying the user constraints instead of just one PCT; (b) it better allows
for pushing of user constraints into the induction algorithm; and (c) it is
less susceptible to myopia. In addition, we propose similarity constraints
for PCTs, which improve the diversity of the resulting PCT set.

1 Introduction

Inductive databases (IDBs) [9, 5] represent a database view on data mining and
knowledge discovery. IDBs contain not only data, but also models. In an IDB,
ordinary queries can be used to access and manipulate data, while inductive
queries can be used to generate, manipulate, and apply models. For example,
“find a set of accurate decision trees that have at most ten nodes” is an inductive
query.

IDBs are closely related to constraint-based mining [3]. Because the induc-
tive queries can include particular constraints, the IDB needs constraint-based
mining algorithms that can be called to construct the models that satisfy these
constraints. The above example query includes, for instance, the constraint that
the trees can contain at most ten nodes.

Much research on IDBs focuses on local models, i.e., models that apply to
only a subset of the examples, such as item sets and association rules. We inves-
tigate how IDBs can support global models. In particular, we consider predictive
clustering trees (PCTs) [1]. PCTs generalize decision trees and can be used for
both prediction and clustering tasks. We define PCTs in Section 2.

Regular PCT induction builds PCTs top-down using a greedy algorithm simi-
lar to that of C4.5 [12] or Cart [4]. This approach has three main disadvantages
w.r.t. inductive databases: (a) it returns only one PCT. This is incompatible
with the IDB view that inductive queries should (if possible) return the set of
all models satisfying the constraints in the query; (b) many useful constraints
are not easy to push into the induction algorithm. Size constraints, such as the
one in our example query, must be handled mostly during post-pruning [7]; and
(c) because the algorithm is greedy, it is susceptible to myopia: It may not find
any tree satisfying the constraints, even though several exist in the hypothesis
space.

In this paper, we propose a new induction algorithm for PCTs that addresses
these three problems to a certain extent, while maintaining an acceptable com-
putational cost. The algorithm employs beam search. Beam search considers at
each step of the search the k best models according to a particular evaluation
score. Therefore, it returns a set of models instead of just one model. Beam
search also supports pushing of size constraints into the induction algorithm, as
we will show in Section 4. Finally, beam search is known to be less susceptible
to myopia than regular greedy search.

Preliminary experiments have revealed a disadvantage of using beam search
for constructing PCTs. Namely, the beam tends to fill up with small variations
of the same PCT, such as trees that differ only in one node. To alleviate this, we
propose similarity constraints for PCTs. We show that these constraints improve
beam diversity.

The remainder of this paper is organized as follows. In Section 2 we present
PCTs. The beam search algorithm is explained in Section 3. In Sections 4 and 5
we discuss anti-monotonic and similarity constraints that can be pushed in the
beam search induction process. Section 6 presents the experimental setup, and
Section 7 discusses the experimental results. We conclude and discuss further
work in Section 8.

2 Predictive Clustering Trees

PCTs [1] generalize classification and regression trees and can be used for a
variety of learning tasks including different types of prediction and clustering.
The PCT framework views a decision tree as a hierarchy of clusters (Fig. 1):
the top-node of a PCT corresponds to one cluster containing all data, which is
recursively partitioned into smaller clusters while moving down the tree. The
leaves represent the clusters at the lowest level of the hierarchy and each leaf
is labeled with its cluster’s centroid. PCTs are constructed such that each split
maximally improves average cluster homogeneity.

PCTs can be built with a greedy recursive top-down induction algorithm
(PCT-TDI, Table 1), similar to that of C4.5 [12] or Cart [4]. The algorithm
takes as input a set of training instances I. The main loop searches for the best
acceptable attribute-value test that can be put in a node (BestTest, Table 1). If
such a test t∗ can be found then the algorithm creates a new internal node labeled

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

A ≤ 3
yes no

B ≤ 5
yes no

B

A

Fig. 1. A classification tree (left) is a special case of a PCT. It hierarchically partitions
the instances into homogeneous clusters (right).

Table 1. The top-down induction (TDI) algorithm for PCTs.

procedure PCT-TDI(I)

1: (t∗, h∗,P∗) = BestTest(I)
2: if t∗ 6= none then
3: for each Ik ∈ P∗ do
4: treek = PCT(Ik)

5: return node(t∗,
⋃

k
{treek})

6: else
7: return leaf(centroid(I))

procedure BestTest(I)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = Partition(t, I)

4: h = Var(I)−
∑

Ik∈P
|Ik|
|I| Var(Ik)

5: if (h > h∗) ∧Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

t∗ and calls itself recursively to construct a subtree for each subset in the partition
P∗ induced by t∗ on the training instances. If no acceptable test can be found,
then the algorithm creates a leaf. (A test is unacceptable if minI∈P |I| < m,
with m a parameter that lower-bounds the number of instances in a leaf.) The
heuristic that ranks the tests is computed as the reduction in variance caused
by partitioning the instances (Line 4 of BestTest).

The difference with standard decision tree learners is that PCTs treat the
variance function and the centroid function that computes a label for each leaf
as parameters that can be instantiated for a given learning task. For a clustering
task, the variance function takes all the attributes into account, while for a
prediction task it focuses on the target attribute that is to be predicted. The
same holds for the centroid function.

PCTs include classification and regression trees [4] as a special case. To con-
struct a regression tree, for example, the regular definition of variance is used
and the centroid is computed as the mean of the target values in the node. To
construct a classification tree, the variance is computed either as the entropy
of the class attribute (then the heuristic is equivalent to information gain [12]),
or by converting the target attribute to a set of binary attributes (one for each
class) and using the regular definition of variance over the resulting 0/1 vectors
(then the heuristic reduces to the Gini index [4]). The centroid function labels
a leaf with the majority class of the examples. These definitions can be trivially

Table 2. The beam search algorithm Clus-BS.

procedure Clus-BS(I,k)

1: i = 0
2: Tleaf =leaf(centroid(I))
3: h = Heuristic(Tleaf , I)
4: beam0 = {(h, Tleaf)}
5: repeat
6: i = i + 1
7: beami = beami−1

8: for each T ∈ beami−1 do
9: R = Refine(T, I)

10: for each Tcand ∈ R do
11: h = Heuristic(Tcand, I)
12: hworst = maxT∈beamiHeuristic(T, I)
13: Tworst = argmaxT∈beamiHeuristic(T, I)
14: if h < hworst or |beami| < k then
15: beami = beami ∪ {(h, Tcand)}
16: if |beami| > k then
17: beami = beami \ {(hworst, Tworst)}
18: until beami = beami−1

19: return beami

procedure Refine(T, I)

1: R = ∅
2: for each leaf l ∈ T do
3: Il = Instances(I,l)
4: for each attribute a do
5: t = best test on a
6: {I1, I2} = Partition(t, Il)
7: l1 = leaf(centroid(I1))
8: l2 = leaf(centroid(I2))
9: n = node(t,{l1, l2})

10: Tr = replace l by n in T
11: R = R ∪ {Tr}
12: return R

extended to the multi-objective case (more than one target attribute) and to
less trivial learning tasks, such as multi-label and hierarchical classification [2],
or clustering of time series [6].

PCTs are implemented in the Clus system. Clus implements syntactic con-
straints and constraints on the size and/or accuracy of the trees [13]. It also
implements various pruning methods, which are commonly used by decision tree
learners to avoid over-fitting. More information about PCTs and Clus can be
found at http://www.cs.kuleuven.be/~dtai/clus and in reference [1].

3 Beam Search

We propose the beam search algorithm Clus-BS, shown in Table 2. The beam
is a set of PCTs ordered by their heuristic value. The algorithm starts with a
beam that contains precisely one PCT: a leaf covering all the training data I.

Each iteration of the main loop creates a new beam by refining the PCTs in
the current beam. That is, the algorithm iterates over the trees in the current
beam and computes for each PCT its set of refinements (Fig. 2). A refinement
is a copy of the given PCT in which one particular leaf is replaced by a depth
one sub-tree (i.e., an internal node with a particular attribute-value test and
two leaves). Note that a PCT can have many refinements: a PCT with L leaves
yields L ·M refined trees, with M the number of possible tests that can be put
in a new node. In Clus-BS, M is equal to the number of attributes. That is,
Clus-BS considers for each attribute only the test with the best heuristic value.

Note that the number of possible tests on a numeric attribute A is typically
huge: one test A < ai, for each possible split point ai. Clus-BS only constructs
one refined tree for the split that yields the best heuristic value. This approach
limits the number of refinements of a given PCT and increases the diversity of
the trees in the beam.

Clus-BS computes for each generated refinement its heuristic value. The
heuristic function differs from the heuristic used in the top-down induction al-
gorithm (TDI) from Section 2. The heuristic in the latter is local, i.e., it only
depends on the instances local to the node that is being constructed. In Clus-
BS, the heuristic is global and measures the quality of the entire tree. The reason
is that beam search needs to compare different trees, whereas TDI only needs
to rank different tests for the same tree node. The heuristic that we propose to
use is:

h(T, I) =

(∑
leaf ∈ T

|Ileaf |
|I|

Var(Ileaf)

)
+ α · size(T) , (1)

with I all training data and Ileaf the examples sorted into leaf. It has two compo-
nents: the first one is the average variance of the leaves of the PCT weighted by
size, and the second one is a size penalty. The latter biases the search to smaller
trees and can be seen as a soft version of a size constraint. The size function
that we use throughout the paper counts the total number of nodes in the PCT
(internal nodes + leaves).

After the heuristic value of a tree is computed, Clus-BS compares it to the
value of the worst tree in the beam. If the new tree is better, or if there are fewer
than k trees (k is the beam width), then Clus-BS adds the new PCT to the
beam, and if this exceeds the beam width, then it removes the worst tree from
the beam. The algorithm ends when the beam no longer changes. This either
occurs if none of the refinements of a tree in the beam is better than the current
worst tree, or if none of the trees in the beam yields any valid refinements. This
is the point in the algorithm where the user constraints from the inductive query
can be used to prune the search: a refinement is valid in Clus-BS if it does not
violate any of these constraints. Section 4 discusses this in detail.

Note that (1) is similar to the heuristic used in the TDI algorithm from
Section 2. Assume that there are no constraints, α = 0 and k = 1. In this
case, the tree computed by Clus-BS will be identical to the tree constructed
with TDI. The only difference with TDI is the order in which the leaves are
refined: TDI refines depth-first, whereas Clus-BS with a beam width of one
refines best-first.

The computational cost of Clus-BS is as follows. Computing the best test
for one attribute for the instances in a given leaf costs O(|Ileaf | log |Ileaf |) (to find
the best split point for a numeric attribute, the instances must be sorted; after
sorting, finding the best split can be done in O(|Ileaf |) time [12]). If the score of
the best test is better than that of the worst tree in the beam, then the refined
tree must be constructed O(size(T)) and inserted into the beam O(log k) (if the
beam is implemented as a balanced binary search tree). Repeating this for all

(a
)

(b
)

(c
)

A
<

a 0

ye
s

no

fa
lse

tru
e

A
<

a 0

ye
s

no

C
<

c 0

ye
s

no

B
in

{b 0
,b

1}
ye

s
no

tru
e

fa
lse

fa
lse

tru
e

A
<

a 0

ye
s

no

D
in

{d 0
,d

1,
d 2
}

ye
s

no

B
in

{b 0
,b

1}
ye

s
no

fa
lse

tru
e

fa
lse

tru
e

A
<

a 0

ye
s

no

F
<

f 0

ye
s

no

B
in

{b 0
,b

1}
ye

s
no

fa
lse

tru
e

fa
lse

tru
e

A
<

a 0

ye
s

no B
in

{b 0
,b

1}
ye

s
no

fa
lse

fa
lse

tru
e

A
<

a 0

ye
s

no

E
<

e 0

ye
s

no

fa
lse

tru
e

fa
lse

A
<

a 0

ye
s

no

K
<

k 0

ye
s

no

fa
lse

tru
e

tru
e

Fig. 2. Refining the trees in the beam. (a) A tree in the beam; (b) the refinements of
tree (a); (c) the refinements of the top-most tree in (b). Note that the refinements (c)
are only computed in a subsequent iteration of the search after the top-most tree of
(b) has entered the beam.

attributes and all leaves yields O(|A|·|I| log |I|+|A|·|leaves(T)|·(size(T)+log k))
because each instance occurs in at most one leaf. If s upper-bounds the size of
the trees in the beam, then the cost of refining the entire beam is O(k · |A| ·
|I| log |I|+ s2k · |A|+ s · |A| · k log k). Finally, the cost of running n iterations of
Clus-BS is O(nk ·|A| ·|I| log |I|+ns2k ·|A|+ns ·|A|·k log k). For comparison, the
computational cost of TDI is O(D · |A| · |I| log |I|), with D the depth of the tree.
Assuming that the first term dominates the complexity of Clus-BS, it follows
that Clus-BS is O(kn/D) times slower. Note that n is in the best case equal to
the number of leaves in the largest tree because each iteration can add at most
one leaf.

4 Anti-Monotonic Constraints

Clus-BS supports any conjunction or disjunction of constraints that are anti-
monotonic with regard to the refinement order. We define this more precisely
with the following definitions.

Definition 1 (Refinement set). The refinement set ρ∗(T) of a tree T given
a refinement operator ρ is the set that is obtained by recursively applying ρ, that
is, limn→∞ ρn(T), with ρ0(T) = {T} and ρi(T) = ρi−1(T)∪

(⋃
Tr∈ρi−1(T) ρ(Tr)

)
if i > 0.

In Clus-BS, ρ(T) is implemented by the Refine procedure in Table 2. Con-
sider again Fig. 2. All trees shown in this figure are part of ρ∗(T), with T the
tree in Fig. 2.a.

Definition 2 (Refinement order). The refinement order ≥ref is a partial or-
der defined on trees as T1 ≥ref T2 if and only if T1 ∈ ρ∗(T2).

Note that T1 ≥ref T2 can be thought of as “T2 is a subtree of T1 sharing the
same root”.

Definition 3 (Anti-monotonic constraint). A constraint is a Boolean func-
tion over trees. A constraint c is anti-monotonic with respect to ≥ref if and only
if ∀T1, T2 : (T1 ≥ref T2 ∧ c(T1)) → c(T2).

If one considers an increasing sequence of trees according to the refinement
order (E.g., going from (a) to (c) in Fig. 2) then the value of an anti-monotonic
constraint can only decrease along the sequence, that is, change from true to
false. This observation is exploited by Clus-BS. If a given refinement violates
one of the anti-monotonic constraints, then the search can be pruned (by not
adding the refinement to the beam) because any subsequent refinement will also
violate the constraint (because of its anti-monotonicity).

We list a number of useful anti-monotonic constraints for trees.

1. The maximum size constraint cs(T) = (size(T) ≤ s) upper-bounds the size of
the tree. This constraint is useful for decision trees because domain experts
are typically interested in small trees for interpretability reasons.

2. The minimum cluster size constraint cm(T) = (minleaf ∈ T |Ileaf | ≥ m) lower-
bounds the number of instances in each leaf of the tree. This constraint is
implemented by most decision tree learners.

3. The maximum depth constraint upper-bounds the maximum depth of the
tree. Sometimes it is useful to constrain tree depth, for example, because the
resulting tree will be more balanced.

4. The maximum prediction cost constraint. This is an extension of the max-
imum depth constraint, where each test is weighted by its prediction cost.
Prediction cost constraints are useful in medical applications where the at-
tributes correspond to expensive lab tests. In such applications, it is useful
to upper-bound the prediction cost of the tree.

All the above constraints are anti-monotonic and can be handled efficiently
by Clus-BS. In the experimental evaluation, we investigate the effect of using
maximum size constraints (Section 6).

So far, we assumed that the user is interested in obtaining trees that are
as accurate as possible. For decision trees, this is accomplished algorithmically
by using a heuristic function that is known to yield accurate trees. Another
possibility is that the user explicitly provides a constraint on the accuracy of the
tree, e.g., acc(T, I) ≥ 85%. (Note that this constraint is not anti-monotonic.)
The goal is then to find, e.g., the smallest tree that satisfies this constraint.
To this end, the algorithm is run repeatedly with increasing values for the size
constraint until the accuracy constraint is satisfied [13].

5 Similarity Constraints

The heuristic value defined in Section 3 only takes the variance and the size of the
PCT into account. In this section, we define a soft similarity constraint, which
can be included in the heuristic computation and biases the search towards a
diverse set of trees (which are dissimilar to each other, as much as possible). We
will call Clus-BS with these (dis)similarity constraints included Clus-BS-S.

To quantify the (dis)similarity of two trees, Clus-BS-S requires a distance
function between trees. Two obvious approaches are: (a) define the distance
based on the syntactic representation of the trees, or (b) define the distance
based on the predictions that the trees make on the training instances. One
problem with (a) is that many syntactically different trees can represent the
same concept, for example, the trees in Fig. 3 both represent the concept A∧B.
If our goal is to find trees that are semantically different, then (b) is to be
preferred and we therefore focus on this approach here.

We propose to compute the distance between two trees (T1 and T2) as the
normalized root mean squared distance between their predictions on the data
set at hand, that is

d(T1, T2, I) =
1
η
·

√∑
t∈I dp(p(T1, t), p(T2, t))2

|I|
, (2)

A
true false

B
true false

true false

false

B
true false

A
true false

true false

false

Fig. 3. Syntactically different trees representing the concept A ∧B.

with η a normalization factor, |I| the number of training instances, p(Tj , t) the
prediction of tree Tj for instance t, and dp a distance function between pre-
dictions. In (2), η and dp depend on the learning task. For regression tasks,
dp is the absolute difference between the predictions, and η = M − m, with
M = maxt∈I,j∈{1,2} p(Tj , t) and m = mint∈I,j∈{1,2} p(Tj , t). This choice of η
ensures that d(T1, T2, I) is in the interval (0, 1). For classification tasks, dp = δ
with

δ(a, b) =
{

1 if a 6= b
0 if a = b

, (3)

and η is 1. These distance functions can be easily adapted to the more general
PCT types mentioned in Section 2 (e.g., for multi-target prediction, multi-label
and hierarchical classification and clustering of time series).

The heuristic value of a tree can now be modified by adding a term that
penalizes trees that are similar to the other trees in the beam.

h(T,beam, I) =

(∑
leaf ∈ T

|Ileaf |
|I|

Var(Ileaf)

)
+α ·size(T)+β ·sim(T,beam, I) (4)

Because the heuristic value of a tree now also depends on the other trees
in the beam, it changes when a new tree is added. Therefore, each time that
Clus-BS-S considers a new candidate tree, it recomputes the heuristic value of
all trees already in the beam using (4), which incorporates the similarity to the
new candidate tree (Tcand) by using (5).

sim(T,beam, I) = 1−
d(T, Tcand, I) +

∑
Ti∈beam d(T, Ti, I)

|beam|
(5)

Note that (5) is in the interval (0, 1) because the numerator has |beam| non-
zero terms that are in (0, 1). Clus-BS-S computes the heuristic value of Tcand

using (4). If the heuristic value of the candidate tree is better than that of the
worst tree in the beam, the candidate tree enters the beam and the worst tree
is removed.

Table 3. The data sets and their properties: number of instances (|I|), number of
discrete/continuous input attributes (D/C), number of classes (Cls), probability of
majority class (Maj), entropy of the class distribution (Ent), mean value of the target
(Mean), and standard deviation of the target (St.dev.).

(a) Classification data sets.

Data set |I| D/C Cls Maj Ent

car 1728 6/0 4 0.70 1.21
mushroom 8124 22/0 2 0.52 1.00
segment 2310 0/19 7 0.14 2.81
vowel 990 3/10 11 0.09 3.46
vehicle 846 0/19 4 0.26 2.00
iris 150 0/4 3 0.33 1.58
ionosphere 351 0/34 2 0.64 0.94
chess 3196 36/0 2 0.52 1.00

(b) Regression data sets.

Data set |I| D/C Mean St.dev.

autoPrice 159 0/15 11445.73 5877.86
bodyfat 252 0/14 19.15 8.37
cpu 209 1/6 99.33 154.76
housing 506 1/12 22.53 9.20
pollution 60 0/15 940.36 62.21
servo 167 4/0 1.39 1.56
pyrim 74 0/27 0.66 0.13
machine cpu 209 0/6 105.62 160.83

6 Experiments

6.1 Aims

We compare Clus with the regular recursive top-down induction algorithm
(TDI, Table 1) to Clus with beam search (BS, Table 2), and beam search with
similarity constraints (BS-S). Our aim is to test the following hypotheses.

1. Hill-climbing search, which is used by TDI, suffers from shortsightedness.
TDI may return a suboptimal model due to its limited exploration of the
hypothesis space. Beam search is known to be less susceptible to this prob-
lem. We therefore expect that on average BS will yield models that are more
accurate or at least as accurate as the models built by TDI.

2. Similarity constraints improve the diversity of the beam, possibly at the cost
of some predictive accuracy. Diversity is important for the domain expert,
who is typically interested in looking at different models, for example because
one PCT is easier to interpret than the other PCTs. Note that if we consider
all models in the beam to make up the answer to the inductive query, then
all these PCTs should be reasonably accurate.

6.2 Setup

We perform experiments on 8 regression and 8 classification data sets from the
UCI machine learning repository [10]. Table 3 lists the properties of the data sets.
We set the parameters of the beam search algorithms ad-hoc to the following
values: k = 10, α = 10−5, and β = 1, where k is the beam width, α is the size
penalty and β is the influence of the similarity constraint (Equations (1) and (4)).
For the classification data sets, we use the version of the heuristic that employs
class entropy to estimate the variance of the target attribute. All experiments
are performed with the Clus system (Section 2), in which the algorithms BS
and BS-S have been implemented.

We measure the predictive performance of each algorithm using 10 fold cross-
validation. For the classification data sets, we report accuracy and for the re-
gression data sets the Pearson correlation coefficient. Because the beam search
algorithms yield not one but k trees, we have to select one of these k trees to
compare to TDI. We decided to use the tree that performs best on the training
data (Ttrain) for this purpose.

To test if all trees in the beam are sufficiently accurate, we measure their
average predictive accuracy (or correlation coefficient). We also measure the
minimum and maximum accuracy (or correlation coefficient) of the trees in the
beam and use these to calculate the difference in performance between the worst
tree and Ttrain and the best tree and Ttrain. That is, we compute Dworst = At−Aw

and Dbest = Ab − At, with At the test set performance of Ttrain, and Aw the
minimum and Ab the maximum test set performance of the trees in the beam.
If Dworst = 0, then Ttrain is the worst tree in the beam, and if Dbest = 0, then
it is the best tree in the beam. We report the average of Dworst and Dbest over
the 10 cross-validation folds.

To quantify the effect of the similarity constraints, we calculate for the two
beam search algorithms beam similarity, which we define as the average similarity
of the trees in the beam. Similarity(beam, I) = 1

|beam|
∑

T ∈ beam sim(T,beam, I),
with sim(T,beam, I) = 1− 1

|beam|
∑

Ti ∈ beam d(T, Ti, I), the similarity of tree T

w.r.t. the other trees in the beam, and d(T, Ti, I) the distance between trees T
and Ti as defined in Section 5. We report beam similarity on the test set averaged
over the 10 cross-validation folds.

We perform experiments for different values of the size constraint. Recall that
in the beam search algorithm, this type of constraints can be enforced during
the search (Section 4). For TDI this is not possible and therefore we use a two
step approach that first builds one large tree and subsequently prunes it back to
satisfy the size constraint [7]. We also report results without any size constraint.
For these results we use, both for TDI and BS, the same pruning algorithm
that is also used in C4.5 [12] (for classification data sets) and in M5 [11] (for
regression data sets).

7 Results and Discussion

7.1 Predictive Performance

Table 4 compares the cross-validated accuracy of TDI, BS, and BS-S on the
classification data and Table 5 the cross-validated correlation coefficient for the
regression data. The tables contain results for different values of the size con-
straint: maximum size ranging from 5 (SC5) to 51 (SC51) nodes, and no size
constraint (NoSC). Each column includes the number of statistically significant
wins (p ≤ 0.05), which are obtained by a 10 fold cross-validated paired t-test
and indicated in bold face.

The results confirm our first hypothesis. BS yields models of comparable
accuracy to TDI. BS wins on 5 classification and 3 regression tasks. TDI wins

on 2 classification and no regression tasks. This confirms that BS yields more
accurate models, which can be explained because it is less susceptible to myopia.
There is no clear correlation between the number of wins and the value of the
size constraint.

BS-S wins on 6 classification and 4 regression tasks and loses on 13 classifi-
cation and 1 regression tasks. BS-S performs, when compared to BS, worse on
classification data than on regression data. This is because the heuristic (used
in BS-S) trades off accuracy for diversity. If a given tree in the beam is accurate,
then new trees will be biased to be less accurate because the similarity score
favors trees with different predictions. For classification problems this effect is
more pronounced because a 0/1 distance between predictions is used, whereas
in the regression case a continuous distance function is used. The latter makes
it “easier” to have different predictions that are still reasonably accurate. Also,
this effect is stronger for bigger size constraints (the majority of the losses of
BS-S are for SC31, SC51 and NoSC) because the relative contribution of the
similarity score to the heuristic is greater for bigger size constraints. Note that
the losses are in the range of 1-2% accuracy, so for the majority of domains this
is not a serious problem.

Our second hypothesis was that BS-S trades off accuracy for beam diversity.
Table 6 lists the beam similarity for BS and BS-S for the classification data and
SC7. The beam similarity of BS-S is always smaller than that of BS. Fig. 4 shows
the trees in the final beam for the “vehicle” data for BS and BS-S. The trees of
BS all have the same test in the top node and include tests on 5 attributes. The
BS-S trees have tests on 3 different attributes in the top node and include tests
on 6 attributes in total. This shows that the trees produced by BS-S not only
produce different predictions, but are also syntactically different from the trees
constructed with BS.

Table 6 lists the average accuracy of the trees in the beam and shows how
much worse (better) the worst (best) tree is compared to the result reported in
Table 4. Consider first the results for BS. For the data sets “mushroom”, “seg-
ment”, and “vehicle”, all trees are of comparable accuracy. For “car”, “vowel”,
“iris”, “ionosphere”, and “chess”, the differences in accuracy become larger. For
most of these, Ttrain is on average among the best trees. This is most obvious for
“chess” where Dbest = 0. Only for 2 out of 8 data sets (“car” and “ionosphere”)
Dbest > Dworst. Note that the differences are larger for BS-S than for BS. This
shows that the variance in accuracy increases with the beam diversity.

7.2 Induction Time

Table 7 compares the running times of all algorithms and the number of models
evaluated by BS and BS-S. Observe that BS-S is (much) slower than BS and
TDI. The longer running time of BS-S is due to two reasons. First, it evaluates
more PCTs because of the similarity measure that is included in the heuristic
score. In BS, the score of the “worst” tree in the beam monotonically improves
with the iteration number. In BS-S, this is no longer the case because the score
of the trees in the beam needs to be recomputed when a new tree enters the

Table 4. Comparison of beam search (BS) and BS with similarity constraints (BS-S)
to top-down induction (TDI) on classification data (accuracy).

TDI BS TDI BS TDI BS TDI BS
Data set SC5 SC7 SC11 SC17

car 77.8 77.8 79.2 77.1 82.2 81.8 87.0 85.6
mushroom 99.4 99.4 99.4 99.6 99.9 100.0 100.0 100.0

segment 40.0 40.7 55.6 55.6 80.9 81.1 90.2 90.4
vowel 20.6 20.7 25.2 27.3 31.6 33.6 38.9 42.3

vehicle 48.7 51.2 51.2 60.2 64.5 64.5 68.9 66.4
iris 92.0 92.0 94.0 96.0 93.3 93.3 93.3 92.7

ionosphere 89.5 89.2 88.6 88.3 88.9 90.6 88.6 88.9
chess 75.5 76.9 90.4 90.4 94.1 93.8 96.5 96.9

Wins 0 0 1 2 0 1 0 1

SC31 SC51 NoSC (Acc) NoSC (Size)
car 92.8 92.6 95.0 94.0 97.5 97.6 113 117

mushroom 100.0 100.0 100.0 100.0 100.0 100.0 15 11
segment 94.9 94.2 96.2 96.0 96.7 96.8 85 85

vowel 49.2 51.8 55.7 61.2 79.2 80.8 191 179
vehicle 70.0 72.5 71.7 72.7 73.9 72.0 167 179

iris 93.3 92.7 93.3 92.7 92.7 92.7 9 11
ionosphere 88.9 88.9 88.9 88.9 88.6 89.5 29 27

chess 97.8 97.7 99.3 99.4 99.4 99.5 53 53

Wins 0 0 1 1 0 0

TDI BS-S TDI BS-S TDI BS-S TDI BS-S
Data set SC5 SC7 SC11 SC17

car 77.8 77.8 79.2 77.1 82.2 81.1 87.0 86.0
mushroom 99.4 99.4 99.4 99.6 99.9 100.0 100.0 99.6

segment 40.0 39.6 55.6 55.1 80.9 81.0 90.2 91.6
vowel 20.6 20.7 25.2 27.3 31.6 36.0 38.9 42.0

vehicle 48.7 51.2 51.2 60.2 64.5 64.3 68.9 68.7
iris 92.0 92.0 94.0 96.0 93.3 93.3 93.3 92.7

ionosphere 89.5 89.2 88.6 88.6 88.9 92.0 88.6 91.5
chess 75.5 76.9 90.4 90.4 94.1 93.8 96.5 95.6

Wins 0 0 1 2 0 2 2 2

SC31 SC51 NoSC (Acc) NoSC (Size)
car 92.8 90.9 95.0 93.3 97.5 97.2 113 95

mushroom 100.0 99.6 100.0 99.6 100.0 99.6 15 11
segment 94.9 94.3 96.2 94.8 96.7 95.4 85 81

vowel 49.2 50.3 55.7 57.9 79.2 81.7 191 187
vehicle 70.0 67.4 71.7 71.4 73.9 71.6 167 189

iris 93.3 92.7 93.3 92.7 92.7 94.7 9 13
ionosphere 88.9 90.6 88.9 90.3 88.6 92.0 29 25

chess 97.8 97.6 99.3 98.3 99.4 98.3 53 43

Wins 3 0 4 0 3 0

Table 5. Comparison of beam search (BS) and BS with similarity constraints (BS-S)
to top-down induction (TDI) on regression data (correlation coefficient).

TDI BS TDI BS TDI BS TDI BS
Data set SC5 SC7 SC11 SC17

autoPrice 0.86 0.88 0.88 0.90 0.87 0.89 0.88 0.89
bodyfat 0.87 0.87 0.94 0.94 0.95 0.95 0.97 0.96

cpu 0.92 0.92 0.92 0.92 0.93 0.94 0.95 0.95
housing 0.76 0.76 0.80 0.78 0.86 0.85 0.89 0.88

pollution 0.44 0.44 0.50 0.53 0.48 0.41 0.55 0.51
servo 0.82 0.82 0.89 0.91 0.90 0.94 0.91 0.93
pyrim 0.64 0.49 0.68 0.54 0.72 0.65 0.73 0.74

machine cpu 0.80 0.79 0.84 0.83 0.87 0.86 0.88 0.87

Wins 0 0 0 0 0 1 0 0

SC31 SC51 NoSC (Acc) NoSC (Size)
autoPrice 0.88 0.90 0.88 0.91 0.88 0.91 17 17

bodyfat 0.98 0.97 0.97 0.97 0.96 0.97 65 77
cpu 0.95 0.95 0.95 0.95 0.94 0.94 23 51

housing 0.91 0.90 0.90 0.89 0.90 0.89 63 55
pollution 0.52 0.62 0.53 0.59 0.49 0.52 13 13

servo 0.92 0.95 0.92 0.95 0.91 0.91 21 17
pyrim 0.73 0.74 0.73 0.68 0.58 0.56 11 11

machine cpu 0.89 0.89 0.90 0.89 0.89 0.87 33 27

Wins 0 1 0 1 0 0

TDI BS-S TDI BS-S TDI BS-S TDI BS-S
Data set SC5 SC7 SC11 SC17

autoPrice 0.86 0.88 0.88 0.90 0.87 0.86 0.88 0.91
bodyfat 0.87 0.87 0.94 0.94 0.95 0.95 0.97 0.97

cpu 0.92 0.92 0.92 0.92 0.93 0.93 0.95 0.95
housing 0.76 0.76 0.80 0.78 0.86 0.85 0.89 0.89

pollution 0.44 0.44 0.50 0.50 0.48 0.47 0.55 0.60
servo 0.82 0.82 0.89 0.91 0.90 0.94 0.91 0.93
pyrim 0.64 0.34 0.68 0.63 0.72 0.53 0.73 0.68

machine cpu 0.80 0.79 0.84 0.83 0.87 0.85 0.88 0.88

Wins 0 0 0 0 0 1 0 0

SC31 SC51 NoSC (Acc) NoSC (Size)
autoPrice 0.88 0.90 0.88 0.91 0.88 0.90 17 29

bodyfat 0.98 0.97 0.97 0.97 0.96 0.98 65 71
cpu 0.95 0.95 0.95 0.95 0.94 0.95 23 41

housing 0.91 0.90 0.90 0.89 0.90 0.90 63 75
pollution 0.52 0.62 0.53 0.51 0.49 0.52 13 13

servo 0.92 0.95 0.92 0.96 0.91 0.91 21 19
pyrim 0.73 0.65 0.73 0.64 0.58 0.54 11 13

machine cpu 0.89 0.90 0.90 0.90 0.89 0.88 33 25

Wins 0 1 1 2 0 0

(a) Without similarity constraint (BS):

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

SCALED V ARIANCE MINOR > 309
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCALED V ARIANCE MINOR > 309
yes no

van saab bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

SCATTER RATIO > 142
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

ELONGATEDNESS > 46
yes no

saab van van bus

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCATTER RATIO > 142
yes no

van saab bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

ELONGATEDNESS > 46
yes no

van saab van bus

MAX LENGTH ASPECT RATIO > 8
yes no

SCATTER RATIO > 163
yes no

SCALED V ARIANCE MINOR > 309
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCATTER RATIO > 163
yes no

SCATTER RATIO > 142
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCATTER RATIO > 163
yes no

ELONGATEDNESS > 46
yes no

saab van van bus

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

PR AXIS RECTANGULARITY > 18
yes no

van saab bus van

(b) With similarity constraint (BS-S):

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

SCALED V ARIANCE MINOR > 309
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCALED V ARIANCE MINOR > 309
yes no

van saab bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

ELONGATEDNESS > 46
yes no

van saab van bus

MAX LENGTH ASPECT RATIO > 8
yes no

PR AXIS RECTANGULARITY > 20
yes no

SCALED V ARIANCE MINOR > 309
yes no

opel van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

PR AXIS RECTANGULARITY > 20
yes no

ELONGATEDNESS > 46
yes no

opel van van bus

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

MAX LENGTH RECTANGULARITY > 137
yes no

van saab bus saab

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCALED RADIUS OF GY RATION > 170
yes no

van saab bus van

ELONGATEDNESS > 41
yes no

MAX LENGTH ASPECT RATIO > 8
yes no

MAX LENGTH ASPECT RATIO > 7
yes no

van bus opel bus

ELONGATEDNESS > 41
yes no

MAX LENGTH RECTANGULARITY > 137
yes no

MAX LENGTH ASPECT RATIO > 7
yes no

van saab opel bus

SCALED V ARIANCE MINOR > 389
yes no

MAX LENGTH ASPECT RATIO > 7
yes no

MAX LENGTH RECTANGULARITY > 137
yes no

opel bus van saab

Fig. 4. Trees in the final beam for the “vehicle” data (BS and BS-S), SC7.

Table 6. Average cross-validated accuracy of all trees in the beam, comparison of the
worst tree in the beam to the reported result of Ttrain (Dworst), comparison of the best
tree in the beam to Ttrain (Dbest), and beam similarity. Results for trees constrained
to have at most 7 nodes (SC7).

Avg. test perf. Dworst Dbest Beam similarity
Data set BS BS-S BS BS-S BS BS-S BS BS-S

car 78.8 77.4 1.1 8.5 4.3 4.3 0.67 0.61
mushroom 99.4 98.8 0.2 3.6 0.0 0.0 0.99 0.90

segment 55.6 55.1 1.0 4.2 0.2 2.6 0.82 0.38
vowel 25.1 25.3 7.2 7.9 2.5 3.8 0.43 0.27

vehicle 59.6 55.8 1.5 13.2 0.1 1.2 0.89 0.47
iris 93.0 93.3 5.3 10.7 1.3 2.0 0.91 0.86

ionosphere 88.6 88.1 2.0 8.6 4.0 5.4 0.86 0.72
chess 82.4 81.3 13.8 17.3 0.0 0.0 0.67 0.55

Table 7. Run times and number of evaluated models. (The experiments were run on
an AMD Opteron Processor 250 2.4GHz system with 8GB of RAM running Linux.)

Run time [s] Evaluated models
Classification data set TDI BS BS-S BS BS-S

car 0.06 0.80 31.25 2638 57879
mushroom 0.08 1.38 20.17 217 4761
segment 0.28 10.17 168.05 2168 151868
vowel 0.34 9.52 249.62 6567 483294
vehicle 0.14 6.18 264.18 6723 590628
iris 0.04 0.04 0.09 198 809
ionosphere 0.10 1.01 5.35 779 29926
chess 0.08 2.35 111.55 1800 92256

Regression data set

autoPrice 0.06 0.37 40.03 2856 69158
bodyfat 0.06 0.48 84.05 2471 94185
cpu 0.08 0.21 9.67 1333 12415
housing 0.09 3.30 1009.27 10821 549292
pollution 0.04 0.09 3.09 1288 13049
servo 0.06 0.16 6.67 2114 11239
pyrim 0.03 0.16 2.65 1195 9357
machine cpu 0.06 0.25 21.44 2178 28131

beam (because of the similarity component). As a result, it becomes harder for
BS-S to satisfy the stopping criterion (the beam no longer changes). Second, in
BS-S, evaluating a single model takes a factor O(k2 · |I|) longer than in BS, with
k the beam width and |I| the number of instances. (We exploit properties of the
distance measure (d(Ta, Tb, I) = d(Tb, Ta, I) and d(Ta, Ta, I) = 0) to make the
evaluation of the similarity component efficient.)

8 Conclusion and Further Work

We propose a new algorithm for inducing predictive clustering trees (PCTs) that
uses beam search. The main advantages of this algorithm are that: it induces a
set of PCTs instead of just one PCT; it supports pushing of anti-monotonic user
constraints, such as maximum tree size, into the induction algorithm; and it is
less susceptible to myopia. In order to improve beam diversity, we introduce soft
similarity constraints based on the predictions of the PCTs.

Our current set of experiments takes into account fixed values for the parame-
ters k (the beam width), and α and β (the contribution of tree size and similarity
score to the heuristic value). In future work, we plan to perform experiments for
different values of β to gain more insight in the trade-off between predictive
performance and beam similarity. Also, the influence of the beam width will be
investigated.

We plan to investigate the use of alternative distance functions for the simi-
larity score. Recall that we hypothesized that the reason for having less accurate
trees in the classification case is that the distance function is less “continuous”
than in the regression case. We plan to investigate smoother distance functions
for classification. Such functions could, for example, take the predicted class
distribution into account instead of just the predicted majority class.

Model diversity, which can be controlled by means of the heuristic proposed
in Section 5, has been shown to increase the predictive performance of classifier
ensembles [8]. Therefore, we plan to investigate if beam search with similarity
constraints can be used to construct an accurate ensemble of PCTs. That is,
instead of selecting from the beam the one PCT that performs best on the
training data, the PCT ensemble will combine all PCTs in the beam by means
of a combination function, such as majority voting. We also plan to investigate
other alternatives for introducing diversity in the beam.

The experimental evaluation of this paper focuses on classification and re-
gression trees. In future work, we plan to test beam search for more general
PCT types. Note that this is, from an algorithmic point of view, trivial: the only
component that changes is the definition of the variance and distance functions.
In this context, we plan to investigate the use of beam search for multi-target
prediction tasks [1], where non-trivial interactions between the target attributes
may exist.

Acknowledgments. This work was supported by the IQ project (IST-FET FP6-

516169). Jan Struyf is a postdoctoral fellow of the Fund for Scientific Research of

Flanders (FWO-Vlaanderen).

References

1. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees.
In 15th Int’l Conf. on Machine Learning, pages 55–63, 1998.

2. H. Blockeel, L. Schietgat, J. Struyf, S. Džeroski, and A. Clare. Decision trees for
hierarchical multilabel classification: A case study in functional genomics. In 10th
European Conf. on Principles and Practice of Knowledge Discovery in Databases,
volume 4213 of Lecture Notes in Computer Science, pages 18–29. Springer, 2006.

3. J-F. Boulicaut and B. Jeudy. Constraint-based data mining. In O. Maimon and
L. Rokach, editors, The Data Mining and Knowledge Discovery Handbook, pages
399–416. Springer, 2005.

4. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and re-
gression trees. Wadsworth, Belmont, 1984.

5. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69–77, 2002.

6. S. Džeroski, I. Slavkov, V. Gjorgjioski, and J. Struyf. Analysis of time series data
with predictive clustering trees. In 5th Int’l Workshop on Knowledge Discovery in
Inductive Databases, pages 47–58, 2006.

7. M. Garofalakis, D. Hyun, R. Rastogi, and K. Shim. Building decision trees with
constraints. Data Mining and Knowledge Discovery, 7(2):187–214, 2003.

8. L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12:993–1001, 1990.

9. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

10. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/mlrepository.html], 1996. Irvine, CA: Uni-
versity of California, Department of Information and Computer Science.

11. J.R. Quinlan. Learning with continuous classes. In 5th Australian Joint Conference
on Artificial Intelligence, pages 343–348. World Scientific, 1992.

12. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series in
Machine Learning. Morgan Kaufmann, 1993.

13. J. Struyf and S. Džeroski. Constraint based induction of multi-objective regres-
sion trees. In Knowledge Discovery in Inductive Databases, 4th Int’l Workshop,
KDID’05, Revised, Selected and Invited Papers, volume 3933 of Lecture Notes in
Computer Science, pages 222–233, 2006.

