Qualitative and Fuzzy Reasoning for identifying non-linear physiological systems: an application to intracellular thiamine kinetics

R. Bellazzi¹, R. Guglielmann², L. Ironi²

¹Dipartimento di Informatica e Sistemistica - Università di Pavia, Pavia, Italy
²Istituto di Analisi Numerica - C.N.R., Pavia, Italy

Corresponding author: Riccardo Bellazzi, PhD,
Dipartimento di Informatica e Sistemistica,
Università di Pavia,
via Ferrata 1, 27100, Pavia, Italy
tel:39-0382-505511, fax:39-0382-505373
e-mail:ric@aim.unipv.it

Abstract

The meaningful description of the behavior of complex dynamic systems through mathematical models is always related to the identification of a model parameters set. This optimization procedure, called dynamic system identification (SI) may be really problematic for those application domains, such as the medical/physiological one, of which either the available knowledge is incomplete or the observed data are poor in number and in quality. This paper deals with the application of an hybrid method, which builds a fuzzy system identifier upon a qualitative structural model, to solve identification problems of the intracellular kinetics of Thiamine (vitamin B_1). The model obtained is robust enough to be used as a simulator, and then to provide physiologists with a deeper understanding of the Thiamine metabolism in the cells.

1 Introduction

A structural model of the the dynamics of complex real-world systems is a set of mathematical equations that meaningfully describes the system behavior. The equations are related to the physical structure of the domain; therefore such model offers potential benefits to the deep comprehension of the system at study as well as to the performance of certain tasks. If we focus our attention on physiology and medicine, such models may allow for the calculation of physiological quantities that can not be directly measured and may also allow the physiologist to formulate hypotheses dealing with the physiological and biochemical structure of the system,
help the clinician to formulate and test diagnostic hypotheses and finally to plan therapeutical
treatments. Unfortunately, the formulation of such structural models may be hampered by the
incompleteness of the available knowledge of the underlying nonlinear dynamics. Moreover, the
identification of model parameters might be impossible, due to a complex experimental design or
to a limited number of available data. In such cases, the system dynamics is often studied under
the hypothesis that minimal perturbations affect the system, that is under the linearity assump-
tion. Although the resulting model captures limited aspects of the system dynamics, it may give
useful information; nevertheless, also the linear formulation may be prohibitive as identifiability
problems may occur.

In theory, a valid alternative to structural modeling, although potentially less informative,
could be represented by non-parametric black-box modeling approaches to SI [14, 16, 22]. But, in
practice, such models, which learn the nonlinear dynamics of the system from input-output data,
result to be very inefficient and not robust when the available experimental data are poor either
in number or in quality. Such a situation is not rare in the fields of physiology and medicine.

Motivated by these considerations, we started a project which aims at the design and imple-
mentation of an efficient and robust method capable to make the most of both the available struc-
tural knowledge and the observed data. The method, that we call FS-QM, is domain-independent
and results from the integration of qualitative models, namely QSIM [17] models, and fuzzy sys-
tems [2, 4]. As both frameworks have been introduced to cope with the complexity of real-world
systems, their combination should benefit from the analytical power of the former one as well as
from the approximation properties of the latter.

In outline, the method exploits the incomplete structural knowledge to build a QSIM model of
the system dynamics, and then it infers, through simulation, all of its possible behaviors. The set
of behaviors is mapped, in accordance with the a priori expert knowledge, into a fuzzy rule-base,
where each rule may be seen as a measure of the possible transition from states to the next ones.
The mathematical interpretation of such a rule-base properly defines and initializes a nonlinear
functional approximator, which is then tuned to the experimental data.

The emphasis of this paper is rather on applicative aspects than on methodological issues.
We discuss the identification problems which arise from modeling a real-world system in the
physiological domain, the intracellular thiamine kinetics, and the solutions given by the appli-
cation of our method [2, 4]. The comparison of our results with those obtained by means of a
traditional application of fuzzy systems to SI [22] highlights the good performance of our method
when applied to derive a simulator of the thiamine kinetics in the intestine cells. The significant
improvement in terms of efficiency and robustness of FS-QM over traditional methods is due to
the good initialization of both the structure of the fuzzy identifier and its parameters built by
encoding the system dynamics captured by its qualitative behaviors [3].

For the sake of completeness, let us remark that the idea of exploiting QR techniques for SI
is not new. Most of the work done addresses the problem of the automation of the traditional
process of SI, that is the automation of both structural identification and the choice of the most
appropriate numerical techniques for parameter estimation and their initialization [5–8, 11, 12].
Another piece of work deals with a method for SI capable to deal with states of incomplete
knowledge [15] in which both the candidate model space and the stream of observations are
defined semi-quantitatively. What distinguishes this piece of work from the other ones is its
capability to deal with system characterized by both incomplete structural knowledge and poor
2 Modeling problems in the physiological/medical domain

The application of mathematical modeling techniques to the study of a wide spectrum of metabolic and endocrine processes has been largely described in the literature [9]. A metabolic system may be essentially viewed as a system of chemical reactions and transport processes controlled by substances produced by the endocrine system. The description of the dynamics of such systems, even in the most simple cases, is a really complex task, and it has been made tractable by the compartmental modeling methodology [1, 13]. Within this framework, a system is decomposed into a finite set of subsystems, called compartments, and the compartments interact either with each others or with the environment\(^1\) by exchanging material.

A compartment is fundamentally an idealized store of a substance, which may often be adequately assumed homogeneously distributed. The transfer of material through the system that occurs by physical transport or chemical reactions is represented as transfer from one compartment to another. The model equations are expressed by Ordinary Differential Equations (ODE) in terms of the state variables of the system, denoted by \(x_i(t)\), that represent the concentration or amount of substance in the \(i\)-th compartment which exchanges matter with other compartments at time \(t\). Then, the rate of change of each \(x_i(t)\) is based on the mass balance law:

\[
\dot{x}_i = f_{i0} + \sum_{j=1, j \neq i}^{n} f_{ij}(x_j) - \sum_{j=1}^{n} f_{ji}(x_i) - f_{0i}(x_i)
\]

(1)

where \(\dot{x}_i\) denotes the time derivative of \(x_i\); \(f_{ij}\) denotes the rate of mass transfer into the \(i\)-th compartment from the \(j\)-th compartment. In general, the transfer of material depends on the quantity or concentration of material in the source compartment and may also be dependent on the quantity or concentration in some other compartments, that is:

\[
f_{ij} = f_{ij}(x_j; x_l, x_m, \ldots)
\]

(2)

where \(x_j\) denotes the state variable of the source compartment, whereas \(x_l, x_m, \ldots\) indicate the variables controlling \(f_{ij}\).

The mathematical model of a compartmental structure then consists of a set of ODE’s which are fully defined when the functional relations (2) are explicitly stated. Mostly, given the complexity of the processes dealt with, such relations are naturally nonlinear, and their definition may very often be intractable due to the incompleteness of the available knowledge. However, for systems intrinsically nonlinear, a linearity assumption \((f_{ij}(x_j) = k_{ij}x_j)\) may be reasonably adopted when the observed dynamics is obtained in response to a small-signal perturbation around the system steady-state condition produced by the administration of a tracer material.

The next step in the system identification process deals with the estimation of the unknown parameters from data. Also in the linear case, this step may be critical if the \(a\ priori\) identifiability condition is not satisfied, that is, if from the ideal data that the experiment would generate it is

\(^1\)indicated as compartment 0
not possible to determine uniquely the theoretical estimate of the unknown parameters. However, as real data are not noise-free, theoretical identifiability does not guarantee that the estimation results are accurate enough to identify a good model of the system dynamics, i.e., a posteriori identifiability. A model can be considered valid, and then give useful information if the identifiability conditions are satisfied. Methods for testing both a priori and a posteriori identifiability are discussed in the literature \cite{10, 18}.

3 The intracellular thiamine kinetics: Identification problems and solutions

Thiamine (Th), also known as vitamin B_1, is one of the basic micronutrients present in food and essential for health. In particular, Th is contained in dried yeast, meat, nuts, legumes and potatoes. Within the cells, Th participates in the carbohydrate metabolism, in the central and peripheral nerve cell function and in the myocardial function. Deficiency of Th causes beriberi with peripheral neurologic, cerebral and cardiovascular manifestations \cite{21}.

More in detail, after its absorption in the intestinal mucosa, Th is released into plasma for the distribution to the other tissues, either in its original chemical form (Th) or in a monophosphorilated one (ThMP). Th is transported through the cell membrane by means of an enzyme-mediated mechanism, and is then directly transformed into a higher energy compound, Thiamine Piro-Phosphate (ThPP); ThPP is dephosphorylated into ThMP, and it is in equilibrium with Thiamine Tri-Phosphate (ThTP). ThPP is the active element that participates in the carbohydrate metabolism. The chemical transformations occurring within the cells are described in Fig. 1.

3.1 Identification of the structural model

Since early 80’s several studies have been carried out to quantitatively assess the Th metabolism in the cells \cite{19, 20}. All these studies were performed on rats, and had the basic goal to quantitatively define the normal and pathological conditions underlying Th chemical transformations and cellular uptake and release. Since the Th metabolism is intrinsically nonlinear, the first exploratory approach to its quantitative characterization consists in its analysis around the steady state conditions. Therefore, from an experimental viewpoint, all these studies were based on tracer experiments, in which a small amount of labeled (radio-active) Th was injected in plasma or in peritoneum; the specific activity (radioactivity per gram) of labeled Th was subsequently measured in plasma and in the cells. From a modeling viewpoint, a linear compartmental model
has been used to study the Th kinetics in several organ tissues, with particular reference to the nervous ones. Let us observe that the ThTP form can be neglected in the model. As a matter of fact, the fast chemical pathway between ThPP and ThTP and the relatively low concentration of ThTP allows us to consider ThTP in equilibrium with ThPP. Then, the model, whose structure is shown in Fig. 2, is described by the following ODE’s:

\[
\begin{align*}
\dot{x}_1 &= k_{14}x_4 - (k_{01} + k_{21})x_1 \\
\dot{x}_2 &= k_{21}x_1 - k_{32}x_2 \\
\dot{x}_3 &= k_{32}x_2 + k_{35}x_5 - (k_{03} + k_{33})x_3 \\
\dot{x}_4 &= k_{40}u_1 - k_{14}x_4 \\
\dot{x}_5 &= k_{50}u_2 - k_{35}x_5
\end{align*}
\]

where \(x_1 \) is the intracellular Th, \(x_2 \) is the intracellular ThPP, \(x_3 \) is the intracellular ThMP, \(x_4 \) is the quantity of Th in the cell membrane while \(x_5 \) is the quantity of ThMP in the cell membrane; \(u_1 \) is the plasmatic Th and \(u_2 \) is the plasmatic ThMP. Finally, the parameters \(k_{ij} \) are the transfer coefficients to be estimated from data. As a matter of fact, compartments denoted by 4 and 5 are fictitious as they do not correspond to any chemical form of Th, but they are just used to model the absorption process of Th in the cells. The model (3-7) proved to satisfy a priori identifiability conditions when a bolus injection in plasma is delivered.

The same model and the same experimental setting were applied to study the intestine tissue metabolism in normal subjects and in subjects suffering from diabetes (one of the main disfunctions of carbohydrate metabolism), both treated and non treated rats. In this case, the main purpose of the study was to quantitatively evaluate the differences in the transfer constants and turnover rates in the three different classes of subjects; on the basis of this evaluation it would also be possible to understand if insulin treatment is able to re-establish quasi-normal conditions in Th metabolism. Unfortunately, the compartmental model identification was unsuccessful, even
using different optimization techniques, ranging from standard nonlinear estimation procedures to Bayesian ones. This results in an a posteriori unidentifiability of the model.

The main reason of this failure may be explained by the intrinsical problems related to the experimental setting: as mentioned before, the intracellular labeled Th is measured after a bolus in plasma. However, the physiological Th pathway in the intestine tissue presents a Th absorption way directly from the intestinal mucosa and a subsequent release into the plasma tissue. On the contrary, it is completely unknown how the Th quantity is physiologically absorbed by intestine cells from plasma, and also how such absorption is regulated. Therefore, the linearity assumption for the transport process from plasma into cells results to be completely inadequate.

This problem hampers the use of compartmental modeling techniques for analyzing the data, and, at a first glance, the use of the data themselves. This is particularly dramatic for this kind of experiments: at each sampling time four rats are sacrificed, and a single measurement is derived as the mean of the four subjects. The efforts and costs of the experimental setting motivate the exploitation of other techniques for data modeling.

3.2 The need for a novel approach

An alternative solution to structural identification is to resort to the so-called “non-parametric” modeling methods. This term is somehow misleading, since the models are always characterized by a set of equations and parameters; however, such parameters do not have a precise physical meaning, and this gives the reason for the “non-parametric” wording. The non-parametric methods aim at reproducing the functional relationships between the observable variables only on the basis of the available data, without requiring knowledge on the physiological system at hand. In our case, due to the complexity of the problem, a natural choice is to exploit nonlinear dynamic discrete models, known as Nonlinear AutoRegressive models with eXogenous inputs (NARX). In such a framework the system dynamics of an output variable y is described by the input-output equation:

$$y_{k+1} = f(y_k, \ldots, y_{k-l}, u_k, \ldots, u_{k-h})$$

where $y \in \mathbb{R}^{n-1}$ and $y \in \mathbb{R}$ are discrete-time sequences, l and h are known delays, and the function $f(\cdot)$ is in general unknown. Assuming $l = h = 0$, equation (8) may be written as follows:

$$y_{k+1} = f(x_k), \quad \text{where } x_k = \{y_k, u_k\}$$

In this context, methods recently proposed to find a function approximator of f are Feedforward Neural Networks, Radial Basis Functions, Wavelet Functions, Fuzzy Systems. However, to build f with the desired accuracy only from the observations, all these approximation schemes usually require sufficiently large data sets.

As far as our application is concerned, such schemes cannot be applied, since no more than 17 measurements are available for each Th chemical form. Moreover, the identification problem is a nonlinear one: the treatment of nonlinear problems is not straightforward and demands some prior information to properly state a reasonable initial guess on the parameter values, and then to

2 Without loss of generality we consider here nonlinear Multiple Input-Single Output systems.
get convergence to their optimal estimate. The methods mentioned above, except Fuzzy Systems (FS) are not capable to embed prior knowledge, and therefore the initial values of the parameters are randomly chosen.

In this setting, the adoption of a non-parametric model able to exploit also the available structural knowledge seems the natural solution for effectively coping with the problems mentioned above. As a matter of fact, FS’s are able to embed the a priori knowledge of the domain under the form of inferential linguistic information, called Fuzzy Rules (FR), but in practice, the information in the linguistic form about a complex system is often poor or unavailable, and then the function f is usually inferred only from the data.

This paper deals with the application of an hybrid method [3], based on the integration of QSIM models [17] and FS’s [22], called FS-QM, which builds a fuzzy identifier upon the available a priori knowledge. The idea underlying our method is simple: the set of behaviors $\{B_1, ..., B_m\}$ generated by the simulation of a QSIM model of the system at study is mapped into M FR’s which, as a whole, capture the structural and behavioral knowledge of the system dynamics. As a matter of fact, such mapping is possible whenever the available knowledge allows us to define a bijective mapping between the quantity-space Q_L, in the QSIM representation, and the fuzzy-quantity space Q_F, whose elements are fuzzy sets. In outline, the main steps of the method are sketched in Fig. 3.

![Figure 3: Main step of FS-QM.](image)

The mathematical interpretation of the generated rules, through suitable fuzzy operators, such as the singleton fuzzifier, the product inference rule, the center average defuzzifier, and the characterization of fuzzy sets by Gaussian membership functions, allows us to initialize the approximator \tilde{f}_0 of f:

$$\tilde{f}_0(x) = \frac{\sum_{j=1}^{M} \hat{y}^j [\prod_{i=1}^{n} \exp\left(-\frac{(x_i - \hat{x}_i^j)^2}{\sigma_i^2}\right)]}{\sum_{j=1}^{M} [\prod_{i=1}^{n} \exp\left(-\frac{(x_i - \hat{x}_i^j)^2}{\sigma_i^2}\right)]}$$

(9)
where: \(\{ x^j_i \} \) and \(\{ \sigma^j_i \} \) are the parameters characterizing the Gaussian membership function which is related to the input variable \(x_i \) and appears in the \(j \)-th rule, \(\hat{y}^j \) is the point where the membership function of the output, or equivalently of the consequent, in the \(j \)-th rule reaches its maximum value. Such an expression allows us to interpret the nonlinear function approximation problem with a FS as the process of tuning on a set of data the vector of parameters \(\theta = \{ \hat{y}, \hat{x}, \sigma \} \), initialized by the vector \(\theta_0 \) in equation (9). The approximator derived in equation (9) is known to possess the universal approximation property, i.e. the capability of approximating any continuous function with an arbitrary degree of accuracy [22].

4 A non-parametric model of Thiamine kinetics

Although a complete knowledge on the mechanism of Th transport in the intestine cells from plasma is not known, the overall structure of the model in Fig. 2 still remains valid: the fluxes and the compartments in plasma and in the cells reflect the available information on the system. On the contrary, the number of compartments that model the membrane and the functional relationships describing the cellular absorption are not completely known. Therefore, we can ignore the compartments 4 and 5, and consequently the equations (6-7), and directly model the plasmatic Th absorption process.

As data sets for all the state variables are available, a non-parametric model of the overall system can be obtained (i) by splitting it into three decoupled subsystems, related to the three Th chemical forms (Th, ThPP and ThMP) obtained in response to the tracer input signals, namely plasmatic Th \((u_1) \) and ThMP \((u_2) \), and (ii) by formulating a NARX model for each of them.

Such models can be written as follows:

\[
x_{1,k+1} = f_1(x_{1,k}, x_{3,k}, u_{1,k}) \tag{10}
\]
\[
x_{2,k+1} = f_2(x_{2,k}, x_{1,k}) \tag{11}
\]
\[
x_{3,k+1} = f_3(x_{3,k}, x_{2,k}, u_{2,k}) \tag{12}
\]

The first step consists in the identification of \(f_1, f_2, f_3 \) in normal subjects. Our final goal deals with the construction of a simulator of the overall nonlinear intracellular Th kinetics. Such a simulator will allow us to understand the discrepancies in the Th metabolism between the different classes of subjects, namely normal, diabetic either treated or not, by comparing the results obtained by the simulator against the actual data.

4.1 Construction of the fuzzy identifiers

The construction of each \(f_i \) proceeds as sketched in Fig. 3, and starts with the construction of the QSIM models of each decoupled subsystem. Each model is described by a single Qualitative Differential Equation (QDE).

1 - Th subsystem: The Th dynamics is described by the QDE:

\[
\dot{x}_1 = S^+(u_1) + M^+(x_3) - M^+(x_1) \tag{13}
\]
where:
- S^+ and M^+ have the usual QSIM meaning, i.e. saturation and monotonicity (respectively);
- $S^+(u_1)$ models the nonlinear absorption process which governs the transfer of Th from plasma. The saturable functional relation is justified by the limited quantity of the mediating enzyme in the time unit;
- $M^+(x_3)$ models the chemical reaction of ThMP into Th. Let us observe that x_3 is modeled as a triangular shaped function: this modeling assumption is based on the knowledge of the tracer qualitative behavior in the cells.
- $M^+(x_1)$ models the chemical transformation of Th into ThPP.

2 - ThPP subsystem: The dynamics of ThPP is modeled by:

$$\dot{x}_2 = M^+(x_1) - M^+(x_2)$$

where:
- $M^+(x_2)$ models the chemical transformation of ThPP into ThMP. x_1 is analogously modeled as x_3, and $M^+(x_1)$ has the same meaning as above.

3 - ThMP subsystem: The equation modelling the dynamics of ThMP is:

$$\dot{x}_3 = S^+(u_2) + M^+(x_2) - M^+(x_3)$$

The functional constraints are analogously defined as in the other subsystems.

The input-output variables in (10-12) assume values in R^+, and their qualitative representations in both QSIM and FS frameworks are defined by their respective Q_L’s and Q_F’s. Table 1 summarizes the Q_L’s and Q_F’s of each x_i and u_i, and highlights the one-to-one correspondence between each Q_L and the respective Q_F. Let us observe that the elements of Q_F are represented in the linguistic form as well as through the values of the parameters which characterize the related membership functions. In our context, such parameters are the mean values (μ) and standard deviations (σ) and have been derived on the basis of the available physiological knowledge.

Since the data used for SI come from tracer experiments, each subsystem is simulated starting from $x_i(0) = 0$, $i = 1, 2, 3$. For the same reason, among all of the generated behaviors we consider only those that reach the system quiescent state. The translation of the generated Quiescent Qualitative Behaviors (QQB) into fuzzy rules is preceded by their analysis with the aim of (i) aggregating those behaviors that do not present any differences with respect to the variables of interest, (ii) filtering those behaviors which are inconsistent with physiological constraints not explicitly embedded in the model. The remaining Admissible Behaviors (AQB) are automatically mapped into FR’s.

Table 2 summarizes, for each model, the number of QQB’s, of AQB’s, and of the generated IF-THEN rules.

Let us remark that the set of AQB’s does not include spurious behaviors, which, on the other hand, would have been easily filtered on the basis of the a priori knowledge of the admissible experimental profiles. Generally, the absence of any spurious behavior in the AQB set is not guaranteed: in such a case, a reduction in FS-QM efficiency might be caused.
Table 1: Mapping between Q_L and Q_F related to each variable. The last two columns report, respectively, the values of \dot{x} and σ.

The mathematical interpretation of each set of rules, in accordance with the choices underlying equation (9), allows us to derive a good initialization of each approximator \tilde{f}_{i0}, and then the system is described by:

$$
\tilde{f}_{10}(x_1, x_3, u_1) = \sum_{j=1}^{11} \tilde{X}_1^j \left[e^{-\frac{b_1-x_1}{\sigma_1}} e^{-\frac{b_2-x_2}{\sigma_2}} e^{-\frac{b_3-x_3}{\sigma_3}} \right]
$$

$$
\tilde{f}_{20}(x_2, x_1) = \sum_{j=1}^{9} \tilde{X}_2^j \left[e^{-\frac{b_1-x_1}{\sigma_1}} e^{-\frac{b_2-x_2}{\sigma_2}} e^{-\frac{b_3-x_3}{\sigma_3}} \right]
$$

$$
\tilde{f}_{30}(x_3, x_2, u_2) = \sum_{j=1}^{12} \tilde{X}_3^j \left[e^{-\frac{b_1-x_1}{\sigma_1}} e^{-\frac{b_2-x_2}{\sigma_2}} e^{-\frac{b_3-x_3}{\sigma_3}} \right]
$$
Table 2: Results of the qualitative simulation of the 3 models, in terms of the number of the generated QQB’s, and of the AQB’s. The number of the generated IF-THEN rules from the translation of the AQB’s into the fuzzy framework is also reported.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th># QQB’s</th>
<th># AQB’s</th>
<th># FR’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

ized in accordance with the values in Table 1, provides a good initial guess for the optimization procedure for parameter estimation from data.

5 Results

In order to make significant the comparison of the performance of our method with a data-driven approach, we look at each equation in (16-18) as a three-layer feedforward neural network, and exploit the Back Propagation algorithm (BP) for parameter estimation. As data-driven approach, we consider fuzzy-neural identifiers (FS-DD) whose structures are dimensionally fixed equal to the instantiated values of M in (16-18) but built from the numerical evidence. Let us observe that, since we exploit information derived from the qualitative simulation to fix the dimension, the performance of FS-DD is here improved with respect to its traditional application where also its structural dimension has to be derived from the data.

The application of our method to identify the system for simulation purposes follows a three-steps scheme:

1. identification: for each \tilde{f}_{i0}, the values of parameters are tuned on a set of real data by using the BP algorithm in order to get an estimate $\hat{\theta}$ of θ, starting from the initial guess θ_0 provided as explained above;

2. validation: the accuracy of \tilde{f}_{i1}, derived at step 1, is tested in accordance with a parallel scheme\(^3\) on a new data set;

3. simulation: the accuracy of all of the three \tilde{f}_{i} as a whole model is tested on a new data set in accordance with a parallel scheme where only the current inputs to the overall system (u_1, u_2) are measured data whereas the current output and input to each subsystem are simulated values.

Identification. Figure 4 shows the results we obtained with the application of our method in the identification phase of each x_i with a threshold error equal to 0.0001 by using a data set observed in normal subjects. Although the problem is ill-posed due to the small number of data, FS-QM performs quite well: this can be explained by the goodness of the initialization of both

\(^3\)In a parallel scheme, the next value of the output variable is calculated given the current measurements of the input variables and the simulated value of the current output: $\tilde{y}_{k+1} = \tilde{f}(\tilde{y}_k, \tilde{u}_k)$
the identifier structures and the guesses of parameters. On the contrary, FS-DD, initialized by exploiting only the data, does not converge to the solution but it gets trapped in a local minimum. Let us fix our attention on the results of FS-DD identification of x_1: Fig. 5 highlights that, although the number of BP loops is highly increased from 350 (Fig. 5A) to 200000 (Fig. 5B), the training error remains constant. Moreover, we can observe a perfect fit on the first 11 data. Such a fit does not derive from identification but is rather related to the construction of the requested 11 rules.

Validation and simulation. Each identified \hat{f}_i has been validated on a new set of data collected in an independent experiment, still on normal subjects. The results confirm the robustness of our approach to deal with NARX approximation schemes (see Table 3).

Our final goal is the construction of a simulator of the overall system dynamics that is capable to reproduce the system behavior in response to any input signals, at least in the range of the
Table 3: Validation errors calculated on data coming from an independent experiment on normal subjects. MSE stands for Mean Squared Error.

<table>
<thead>
<tr>
<th>subsystem</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>validation MSE</td>
<td>0.0065</td>
<td>0.0215</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

Figure 6: FS-QM simulation results of x_1 (A), x_2 (B), x_3 (C).

experimental settings previously defined. Such simulator is defined through the equations:

$$
\begin{align*}
\tilde{x}_{1k+1} &= \tilde{f}_1(\tilde{x}_{1k}, \tilde{x}_{3k}, u_{1k}) \\
\tilde{x}_{2k+1} &= \tilde{f}_2(\tilde{x}_{2k}, \tilde{x}_{1k}) \\
\tilde{x}_{3k+1} &= \tilde{f}_3(\tilde{x}_{3k}, \tilde{x}_{2k}, u_{2k})
\end{align*}
$$

where $\tilde{x}_{i0} = x_{i0}$ and $u_{ik}, \forall k$, are the input data to the system. Our simulation results on the new data set (Fig. 6) clearly show the validity of FS-QM as an alternative methodology to identify nonlinear systems.

Remark. Clearly, within this approach the possibility of identifying parameters with a precise meaning is lost, but the reliable simulator at our disposal makes possible to enrich the knowledge of Th kinetics and to provide diagnostic and therapeutic information to physiologist: in particular, it will be possible to fit the main goal of the study, that is the understanding of insulin action on the Th metabolism in the cell. An indirect evaluation of the effects of diabetes on Th metabolism may be obtained by comparing the profiles simulated by (19) against the data of pathological subjects either treated or not. From a preliminary analysis of the results obtained, we can reasonably affirm that ThPP exhibits the same behavior both in normal and treated subjects.

6 Discussion

Mathematical modeling is often used in biomedical sciences to obtain a quantitative description of the (patho-)physiology underlying a physical system. Compartmental models represent a
powerful class of such approaches: they are able to describe the mechanisms of release and up-
take of a certain physiological substrate by contemporaneously expressing the system dynamics
through a set of ODE’s and quantifying the fluxes of substrate between compartments through a
set of parameters. When the available data do not allow to identify the model parameters, due to
measurement errors, inaccurate sampling time or, more simply, to an inadequacy of some model
assumptions, the model itself is revised or discarded. An alternative solution is to resort to non-
parametric modeling, that describes the dynamics of the system at hand relying on very general
nonlinear functions, moulded by the available data. In this context, the structural assumptions
made by compartmental models are relaxed, and only a descriptive quantitative knowledge may
be derived.

Unfortunately, it may happen that also non-parametric approaches are likely to fail: as a
matter of fact, since a posteriori unidentifiability may be also due to the lack of a sufficient
number (or of a sufficient quality) of data, the search for a robust non-parametric description
turns out to be infeasible in most cases.

In this paper we have described the successful application of a novel Intelligent Data Anal-
ysis methodology that aims at filling the gap between the parametric (compartmental) and non-
parametric modeling. Thanks to the application of QR techniques, the structural assumptions on
the relationships between the problem variables are retained; moreover, thanks to the application
of FS’s, such assumptions are translated into a non-parametric model, whose parameters are
properly initialized on the basis of a priori knowledge. Finally, the approximator of the system
dynamics derived is robust enough for the purposes of the study.

From the application viewpoint, our proposed approach enabled us to draw physiologically
sound conclusions from a set of data, that revealed to be unexploitable by classical compartmental
modeling.

In conclusion, the results presented in this paper confirm our belief in the potential useful-
ness of our methodology for several classes of domains, among which medicine represents a
prominent field: the presence of structural knowledge and the availability of costly data set, poor
in number and in quality, motivate the development of approaches able to combine qualitative
and quantitative information. The marriage of QR and fuzzy-based methods allows us to smooth
down the distinction between mathematical models identification and Data Mining approaches,
moving towards new approaches able to intelligently analyze the available data. In our future
work, our aim will be to better systematize FS-QM in order to allow for its broader application in
different areas.

7 Acknowledgement

We would especially like to thank A. Nauti and C. Patrini who provided us with the experimental
data and physiological knowledge.

References

don, 1974.

