Discovery of differential equations using probabilistic grammars: Appendix

Boštjan Gec ${ }^{1,2}$, Nina Omejc ${ }^{1,2}$ [0000-0003-1212-1566] , Jure Brence ${ }^{1,2}[0000-0002-1065-9912]$, Sašo Džeroski ${ }^{1,2}[0000-0003-2363-712 X]$, and Ljupčo Todorovski ${ }^{1,3[0000-0003-0037-9260]}$
${ }^{1}$ Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
${ }^{2}$ Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
${ }^{3}$ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Abstract

Online appendix to the paper Discovery of differential equations using probabilistic grammars published in the Proceedings of the Twenty-Fifth International Conference on Discovery Science (DS-2022) by Springer Nature.

A Learning curve estimation

ProGED performs Monte-Carlo sampling of candidate equations from a distribution defined by a PCFG. We obtain performance estimates, such as learning curves and the computation time required to find the solution, through bootstrapped resampling.

As the result of running ProGED, we have a list of N candidate equations, each with an associated error-of-fit and a probability of the right-hand side expression derived from the grammar. We randomly sample a sequence of N models from this list without repetition and following the expression probabilities. We then calculate the cumulative minimum of error across this sequence and thus obtain a single learning curve. We repeat this procedure many (at least 1000) times and average the learning curves. The resulting curve estimates the expected best error-of-fit ProGED would achieve with a given number of models sampled. In this way, we simulate repeating the random sampling experiment many times.

B Reconstructed equations

Table 1. Each methods' best reconstructed model for the VDP data set.

method	obs. Reconstructed ODEs
SINDy	XY $\dot{x}=0.99998 y$
	XY $\dot{y}=-0.99998 x+0.49991 y-0.49991 x^{2} y$
L-ODEfind	XY $\dot{x}=0.99990 y$
	XY $\dot{y}=-0.99995 x+0.49980 y-0.49986 x^{2} y$
	$\mathrm{X} \quad \ddot{x}=-0.99993 x+0.49918 \dot{x}-0.49961 x^{2} \dot{x}$
	$\overline{\mathrm{Y}} \quad \ddot{y}=0.01273+0.76615 \dot{y}-0.43317 y^{3}+0.80264 y^{2} \dot{y}-0.06486 \dot{y}^{3}$
GPoM	XY $\dot{x}=0.99975 y$
	XY $\dot{y}=-1.00014 x+0.50107 y-0.49953 x^{2} y$
	X $\quad \dot{x}=1 y$
	Х $\dot{y}=-0.99992 x+0.50070 y-0.49965 x^{2} y$
	$\dot{x}=1 y$
	Y $\dot{y}=0.01552+0.44866 x-1.22201 y-0.56297 y^{3}+$
	$+0.88215 x^{2} y+0.10693 x y^{2}+0.03426 y^{3}$
ProGED	XY $\dot{x}=0.99999 y$
	ХY $\dot{y}=-0.99998 x+0.49991 y-0.49991 x^{2} y$
	XY $\dot{x}=1.00001 y$
	XY $\dot{y}=-0.99998 x+0.49997 y-0.49998 x^{2} y$
	X $\quad \dot{x}=0.24209 y$
	X $\dot{y}=-4.17027 x+0.54101 y-0.54491 x^{2} y$
	$\mathrm{Y} \quad \dot{x}=0.56267 y$
	Y $\dot{y}=-1.78159 x+0.50896 y-1.59903 x^{2} y$

Table 2. The first-order variants of the second-order ODEs reconstructed by the LODEfind method and reported in Table 1.

| Obs. Inverted ODEs |
| :---: | :--- |
| $\mathrm{X} \quad$$\dot{x}=y$
 $\dot{y}=-0.99993 x+0.49918 y-0.49961 x^{2} y$ |
| $\mathrm{Y} \quad$$\dot{x}=0.01273+0.76615 x-0.43317 y^{3}+0.80264 y^{2} x-0.06486 x^{3}$
 $\dot{y}=x$ |

